11,964 research outputs found

    Interactive Perception Based on Gaussian Process Classification for House-Hold Objects Recognition and Sorting

    Get PDF
    We present an interactive perception model for object sorting based on Gaussian Process (GP) classification that is capable of recognizing objects categories from point cloud data. In our approach, FPFH features are extracted from point clouds to describe the local 3D shape of objects and a Bag-of-Words coding method is used to obtain an object-level vocabulary representation. Multi-class Gaussian Process classification is employed to provide and probable estimation of the identity of the object and serves a key role in the interactive perception cycle – modelling perception confidence. We show results from simulated input data on both SVM and GP based multi-class classifiers to validate the recognition accuracy of our proposed perception model. Our results demonstrate that by using a GP-based classifier, we obtain true positive classification rates of up to 80%. Our semi-autonomous object sorting experiments show that the proposed GP based interactive sorting approach outperforms random sorting by up to 30% when applied to scenes comprising configurations of household objects

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Human-Machine Interface for Remote Training of Robot Tasks

    Full text link
    Regardless of their industrial or research application, the streamlining of robot operations is limited by the proximity of experienced users to the actual hardware. Be it massive open online robotics courses, crowd-sourcing of robot task training, or remote research on massive robot farms for machine learning, the need to create an apt remote Human-Machine Interface is quite prevalent. The paper at hand proposes a novel solution to the programming/training of remote robots employing an intuitive and accurate user-interface which offers all the benefits of working with real robots without imposing delays and inefficiency. The system includes: a vision-based 3D hand detection and gesture recognition subsystem, a simulated digital twin of a robot as visual feedback, and the "remote" robot learning/executing trajectories using dynamic motion primitives. Our results indicate that the system is a promising solution to the problem of remote training of robot tasks.Comment: Accepted in IEEE International Conference on Imaging Systems and Techniques - IST201
    • …
    corecore