199,755 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    LwHBench: A low-level hardware component benchmark and dataset for Single Board Computers

    Full text link
    In today's computing environment, where Artificial Intelligence (AI) and data processing are moving toward the Internet of Things (IoT) and the Edge computing paradigm, benchmarking resource-constrained devices is a critical task to evaluate their suitability and performance. The literature has extensively explored the performance of IoT devices when running high-level benchmarks specialized in particular application scenarios, such as AI or medical applications. However, lower-level benchmarking applications and datasets that analyze the hardware components of each device are needed. This low-level device understanding enables new AI solutions for network, system and service management based on device performance, such as individual device identification, so it is an area worth exploring more in detail. In this paper, we present LwHBench, a low-level hardware benchmarking application for Single-Board Computers that measures the performance of CPU, GPU, Memory and Storage taking into account the component constraints in these types of devices. LwHBench has been implemented for Raspberry Pi devices and run for 100 days on a set of 45 devices to generate an extensive dataset that allows the usage of AI techniques in different application scenarios. Finally, to demonstrate the inter-scenario capability of the created dataset, a series of AI-enabled use cases about device identification and context impact on performance are presented as examples and exploration of the published data

    Fog-enabled Scalable C-V2X Architecture for Distributed 5G and Beyond Applications

    Get PDF
    The Internet of Things (IoT) ecosystem, as fostered by fifth generation (5G) applications, demands a highly available network infrastructure. In particular, the internet of vehicles use cases, as a subset of the overall IoT environment, require a combination of high availability and low latency in big volumes support. This can be enabled by a network function virtualization architecture that is able to provide resources wherever and whenever needed, from the core to the edge up to the end user proximity, in accordance with the fog computing paradigm. In this article, we propose a fog-enabled cellular vehicle-to-everything architecture that provides resources at the core, the edge and the vehicle layers. The proposed architecture enables the connection of virtual machines, containers and unikernels that form an application-as-a-service function chain that can be deployed across the three layers. Furthermore, we provide lifecycle management mechanisms that can efficiently manage and orchestrate the underlying physical resources by leveraging live migration and scaling functionalities. Additionally, we design and implement a 5G platform to evaluate the basic functionalities of our proposed mechanisms in real-life scenarios. Finally, the experimental results demonstrate that our proposed scheme maximizes the accepted requests, without violating the applications’ service level agreement.This work has been supported in part by the research projects SPOTLIGHT (722788), AGAUR (2017-SGR-891), 5G-DIVE (859881), SPOT5G (TEC2017-87456-P), MonB5G (871780) and 5G-Routes (951867)

    Valuing the User Experience in Human-Computer Interaction: the Respected User Manifesto

    Get PDF
    There is a no-man's land between how the Graphical User Interfaces are typically conceived, designed and engineered in desktop applications and mobile apps, and what users actually expect: it's where the users' experience, expectations, training, habits, mental attitude come into play. New software versions add features, change the GUI layout, behavior and environment for innovation and marketing reasons, but in doing so they often disregard the value of the user experience: all the user can do is accept the new situation and trying to adapt. To make things worse, customization options are usually limited when it comes to restoring the previous environment, and downgrading restrictions in software licenses also apply. Background services may also start at the worst time, monopolizing the system against the user's will, causing frustration and possibly more serious problems due to service unavailability. In short, there's a grey cross area in software design and deployment where the user is not fully respected as a person whose experience is intrinsically a value worth preserving. In this paper we analyze and discuss some common situations from different scenarios, and exploit them to extract some golden rules for a more respected software user - the Respected User Manifesto

    Intrusion Detection in Critical SD-IoT Ecosystem

    Get PDF
    The Internet of Things (IoT) connects physical objects with intelligent decision-making support to exchange information and enable various critical applications. The IoT enables billions of devices to connect to the Internet, thereby collecting and exchanging real-time data for intelligent services. The complexity of IoT management makes it difficult to deploy and manage services dynamically. Thus, in recent times, Software Defined Network (SDN) has been widely adopted in IoT service management to provide dynamic and adaptive capabilities to the traditional IoT ecosystem. This has resulted in the evolution of a new paradigm known as Software-defined IoT (SD-IoT). Although there are several benefits of SD-IoT, it also opens new frontiers for attackers to introduce attacks and intrusions. Specifically, it becomes challenging working in a critical IoT environment where any delay or disruption caused by an intruder can be life-threatening or can cause significant destruction. However, given the flexibility of SDN, it is easier to deploy different intrusion detection systems that can detect attacks or anomalies promptly. Thus, in this paper, we have deployed a hybrid architecture that allows monitoring, analysis, and detection of attacks and anomalies in the SD-IoT ecosystem. In this work, we have considered three scenarios, a) denial of services, b) distributed denial of service, and c) packet fragmentation. The work is validated using simulated experiments performed using SNORT deployed on the Mininet platform for three scenarios

    Using artificial intelligence to support emerging networks management approaches

    Get PDF
    In emergent networks such as Internet of Things (IoT) and 5G applications, network traffic estimation is of great importance to forecast impacts on resource allocation that can influence the quality of service. Besides, controlling the network delay caused with route selection is still a notable challenge, owing to the high mobility of the devices. To analyse the trade-off between traffic forecasting accuracy and the complexity of artificial intelligence models used in this scenario, this work first evaluates the behavior of several traffic load forecasting models in a resource sharing environment. Moreover, in order to alleviate the routing problem in highly dynamic ad-hoc networks, this work also proposes a machine-learning-based routing scheme to reduce network delay in the high-mobility scenarios of flying ad-hoc networks, entitled Q-FANET. The performance of this new algorithm is compared with other methods using the WSNet simulator. With the obtained complexity analysis and the performed simulations, on one hand the best traffic load forecast model can be chosen, and on the other, the proposed routing solution presents lower delay, higher packet delivery ratio and lower jitter in highly dynamic networks than existing state-of-art methods

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    Design Fiction Diegetic Prototyping: A Research Framework for Visualizing Service Innovations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose: This paper presents a design fiction diegetic prototyping methodology and research framework for investigating service innovations that reflect future uses of new and emerging technologies. Design/methodology/approach: Drawing on speculative fiction, we propose a methodology that positions service innovations within a six-stage research development framework. We begin by reviewing and critiquing designerly approaches that have traditionally been associated with service innovations and futures literature. In presenting our framework, we provide an example of its application to the Internet of Things (IoT), illustrating the central tenets proposed and key issues identified. Findings: The research framework advances a methodology for visualizing future experiential service innovations, considering how realism may be integrated into a designerly approach. Research limitations/implications: Design fiction diegetic prototyping enables researchers to express a range of ‘what if’ or ‘what can it be’ research questions within service innovation contexts. However, the process encompasses degrees of subjectivity and relies on knowledge, judgment and projection. Practical implications: The paper presents an approach to devising future service scenarios incorporating new and emergent technologies in service contexts. The proposed framework may be used as part of a range of research designs, including qualitative, quantitative and mixed method investigations. Originality: Operationalizing an approach that generates and visualizes service futures from an experiential perspective contributes to the advancement of techniques that enables the exploration of new possibilities for service innovation research
    • …
    corecore