1,007 research outputs found

    An Improved Constraint-Tightening Approach for Stochastic MPC

    Full text link
    The problem of achieving a good trade-off in Stochastic Model Predictive Control between the competing goals of improving the average performance and reducing conservativeness, while still guaranteeing recursive feasibility and low computational complexity, is addressed. We propose a novel, less restrictive scheme which is based on considering stability and recursive feasibility separately. Through an explicit first step constraint we guarantee recursive feasibility. In particular we guarantee the existence of a feasible input trajectory at each time instant, but we only require that the input sequence computed at time kk remains feasible at time k+1k+1 for most disturbances but not necessarily for all, which suffices for stability. To overcome the computational complexity of probabilistic constraints, we propose an offline constraint-tightening procedure, which can be efficiently solved via a sampling approach to the desired accuracy. The online computational complexity of the resulting Model Predictive Control (MPC) algorithm is similar to that of a nominal MPC with terminal region. A numerical example, which provides a comparison with classical, recursively feasible Stochastic MPC and Robust MPC, shows the efficacy of the proposed approach.Comment: Paper has been submitted to ACC 201

    Learning-based predictive control for linear systems: a unitary approach

    Full text link
    A comprehensive approach addressing identification and control for learningbased Model Predictive Control (MPC) for linear systems is presented. The design technique yields a data-driven MPC law, based on a dataset collected from the working plant. The method is indirect, i.e. it relies on a model learning phase and a model-based control design one, devised in an integrated manner. In the model learning phase, a twofold outcome is achieved: first, different optimal p-steps ahead prediction models are obtained, to be used in the MPC cost function; secondly, a perturbed state-space model is derived, to be used for robust constraint satisfaction. Resorting to Set Membership techniques, a characterization of the bounded model uncertainties is obtained, which is a key feature for a successful application of the robust control algorithm. In the control design phase, a robust MPC law is proposed, able to track piece-wise constant reference signals, with guaranteed recursive feasibility and convergence properties. The controller embeds multistep predictors in the cost function, it ensures robust constraints satisfaction thanks to the learnt uncertainty model, and it can deal with possibly unfeasible reference values. The proposed approach is finally tested in a numerical example

    Recursive Feasibility of Stochastic Model Predictive Control with Mission-Wide Probabilistic Constraints

    Full text link
    This paper is concerned with solving chance-constrained finite-horizon optimal control problems, with a particular focus on the recursive feasibility issue of stochastic model predictive control (SMPC) in terms of mission-wide probability of safety (MWPS). MWPS assesses the probability that the entire state trajectory lies within the constraint set, and the objective of the SMPC controller is to ensure that it is no less than a threshold value. This differs from classic SMPC where the probability that the state lies in the constraint set is enforced independently at each time instant. Unlike robust MPC, where strict recursive feasibility is satisfied by assuming that the uncertainty is supported by a compact set, the proposed concept of recursive feasibility for MWPS is based on the notion of remaining MWPSs, which is conserved in the expected value sense. We demonstrate the idea of mission-wide SMPC in the linear SMPC case by deploying a scenario-based algorithm

    Stochastic Model Predictive Control with a Safety Guarantee for Automated Driving

    Full text link
    Automated vehicles require efficient and safe planning to maneuver in uncertain environments. Largely this uncertainty is caused by other traffic participants, e.g., surrounding vehicles. Future motion of surrounding vehicles is often difficult to predict. Whereas robust control approaches achieve safe, yet conservative motion planning for automated vehicles, Stochastic Model Predictive Control (SMPC) provides efficient planning in the presence of uncertainty. Probabilistic constraints are applied to ensure that the maximal risk remains below a predefined level. However, safety cannot be ensured as probabilistic constraints may be violated, which is not acceptable for automated vehicles. Here, we propose an efficient trajectory planning framework with safety guarantees for automated vehicles. SMPC is applied to obtain efficient vehicle trajectories for a finite horizon. Based on the first optimized SMPC input, a guaranteed safe backup trajectory is planned, using reachable sets. The SMPC input is only applied to the vehicle if a safe backup solution can be found. If no new safe backup solution can be found, the previously calculated, still valid safe backup solution is applied instead of the SMPC solution. Recursive feasibility of the safe SMPC algorithm is proved. Highway simulations show the effectiveness of the proposed method regarding performance and safety
    corecore