4,958 research outputs found

    A Human Driver Model for Autonomous Lane Changing in Highways: Predictive Fuzzy Markov Game Driving Strategy

    Get PDF
    This study presents an integrated hybrid solution to mandatory lane changing problem to deal with accident avoidance by choosing a safe gap in highway driving. To manage this, a comprehensive treatment to a lane change active safety design is proposed from dynamics, control, and decision making aspects. My effort first goes on driver behaviors and relating human reasoning of threat in driving for modeling a decision making strategy. It consists of two main parts; threat assessment in traffic participants, (TV s) states, and decision making. The first part utilizes an complementary threat assessment of TV s, relative to the subject vehicle, SV , by evaluating the traffic quantities. Then I propose a decision strategy, which is based on Markov decision processes (MDPs) that abstract the traffic environment with a set of actions, transition probabilities, and corresponding utility rewards. Further, the interactions of the TV s are employed to set up a real traffic condition by using game theoretic approach. The question to be addressed here is that how an autonomous vehicle optimally interacts with the surrounding vehicles for a gap selection so that more effective performance of the overall traffic flow can be captured. Finding a safe gap is performed via maximizing an objective function among several candidates. A future prediction engine thus is embedded in the design, which simulates and seeks for a solution such that the objective function is maximized at each time step over a horizon. The combined system therefore forms a predictive fuzzy Markov game (FMG) since it is to perform a predictive interactive driving strategy to avoid accidents for a given traffic environment. I show the effect of interactions in decision making process by proposing both cooperative and non-cooperative Markov game strategies for enhanced traffic safety and mobility. This level is called the higher level controller. I further focus on generating a driver controller to complement the automated car’s safe driving. To compute this, model predictive controller (MPC) is utilized. The success of the combined decision process and trajectory generation is evaluated with a set of different traffic scenarios in dSPACE virtual driving environment. Next, I consider designing an active front steering (AFS) and direct yaw moment control (DYC) as the lower level controller that performs a lane change task with enhanced handling performance in the presence of varying front and rear cornering stiffnesses. I propose a new control scheme that integrates active front steering and the direct yaw moment control to enhance the vehicle handling and stability. I obtain the nonlinear tire forces with Pacejka model, and convert the nonlinear tire stiffnesses to parameter space to design a linear parameter varying controller (LPV) for combined AFS and DYC to perform a commanded lane change task. Further, the nonlinear vehicle lateral dynamics is modeled with Takagi-Sugeno (T-S) framework. A state-feedback fuzzy H∞ controller is designed for both stability and tracking reference. Simulation study confirms that the performance of the proposed methods is quite satisfactory

    Model-based control for automotive applications

    Get PDF
    The number of distributed control systems in modern vehicles has increased exponentially over the past decades. Today’s performance improvements and innovations in the automotive industry are often resolved using embedded control systems. As a result, a modern vehicle can be regarded as a complex mechatronic system. However, control design for such systems, in practice, often comes down to time-consuming online tuning and calibration techniques, rather than a more systematic, model-based control design approach. The main goal of this thesis is to contribute to a corresponding paradigm shift, targeting the use of systematic, model-based control design approaches in practice. This implies the use of control-oriented modeling and the specification of corresponding performance requirements as a basis for the actual controller synthesis. Adopting a systematic, model-based control design approach, as opposed to pragmatic, online tuning and calibration techniques, is a prerequisite for the application of state-of-the-art controller synthesis methods. These methods enable to achieve guarantees regarding robustness, performance, stability, and optimality of the synthesized controller. Furthermore, from a practical point-of-view, it forms a basis for the reduction of tuning and calibration effort via automated controller synthesis, and fulfilling increasingly stringent performance demands. To demonstrate these opportunities, case studies are defined and executed. In all cases, actual implementation is pursued using test vehicles and a hardware-in-the-loop setup. • Case I: Judder-induced oscillations in the driveline are resolved using a robustly stable drive-off controller. The controller prevents the need for re-tuning if the dynamics of the system change due to wear. A hardware-in-the-loop setup, including actual sensor and actuator dynamics, is used for experimental validation. • Case II: A solution for variations in the closed-loop behavior of cruise control functionality is proposed, explicitly taking into account large variations in both the gear ratio and the vehicle loading of heavy duty vehicles. Experimental validation is done on a heavy duty vehicle, a DAF XF105 with and without a fully loaded trailer. • Case III: A systematic approach for the design of an adaptive cruise control is proposed. The resulting parameterized design enables intuitive tuning directly related to comfort and safety of the driving behavior and significantly reduces tuning effort. The design is validated on an Audi S8, performing on-the-road experiments. • Case IV: The design of a cooperative adaptive cruise control is presented, focusing on the feasibility of implementation. Correspondingly, a necessary and sufficient condition for string stability is derived. The design is experimentally tested using two Citroën C4’s, improving traffic throughput with respect to standard adaptive cruise control functionality, while guaranteeing string stability of the traffic flow. The case studies consider representative automotive control problems, in the sense that typical challenges are addressed, being variable operating conditions and global performance qualifiers. Based on the case studies, a generic classification of automotive control problems is derived, distinguishing problems at i) a full-vehicle level, ii) an in-vehicle level, and iii) a component level. The classification facilitates a characterization of automotive control problems on the basis of the required modeling and the specification of corresponding performance requirements. Full-vehicle level functionality focuses on the specification of desired vehicle behavior for the vehicle as a whole. Typically, the required modeling is limited, whereas the translation of global performance qualifiers into control-oriented performance requirements can be difficult. In-vehicle level functionality focuses on actual control of the (complex) vehicle dynamics. The modeling and the specification of performance requirements are typically influenced by a wide variety of operating conditions. Furthermore, the case studies represent practical application examples that are specifically suitable to apply a specific set of state-of-the-art controller synthesis methods, being robust control, model predictive control, and gain scheduling or linear parameter varying control. The case studies show the applicability of these methods in practice. Nevertheless, the theoretical complexity of the methods typically translates into a high computational burden, while insight in the resulting controller decreases, complicating, for example, (online) fine-tuning of the controller. Accordingly, more efficient algorithms and dedicated tools are required to improve practical implementation of controller synthesis methods

    Yaw Rate and Sideslip Angle Control Through Single Input Single Output Direct Yaw Moment Control

    Get PDF
    Electric vehicles with independently controlled drivetrains allow torque vectoring, which enhances active safety and handling qualities. This article proposes an approach for the concurrent control of yaw rate and sideslip angle based on a single-input single-output (SISO) yaw rate controller. With the SISO formulation, the reference yaw rate is first defined according to the vehicle handling requirements and is then corrected based on the actual sideslip angle. The sideslip angle contribution guarantees a prompt corrective action in critical situations such as incipient vehicle oversteer during limit cornering in low tire-road friction conditions. A design methodology in the frequency domain is discussed, including stability analysis based on the theory of switched linear systems. The performance of the control structure is assessed via: 1) phase-plane plots obtained with a nonlinear vehicle model; 2) simulations with an experimentally validated model, including multiple feedback control structures; and 3) experimental tests on an electric vehicle demonstrator along step steer maneuvers with purposely induced and controlled vehicle drift. Results show that the SISO controller allows constraining the sideslip angle within the predetermined thresholds and yields tire-road friction adaptation with all the considered feedback controllers

    Activity Report: Automatic Control 2013

    Get PDF

    Closed-loop elastic demand control under dynamic pricing program in smart microgrid using super twisting sliding mode controller

    Get PDF
    Electricity demand is rising due to industrialisation, population growth and economic development. To meet this rising electricity demand, towns are renovated by smart cities, where the internet of things enabled devices, communication technologies, dynamic pricing servers and renewable energy sources are integrated. Internet of things (IoT) refers to scenarios where network connectivity and computing capability is extended to objects, sensors and other items not normally considered computers. IoT allows these devices to generate, exchange and consume data without or with minimum human intervention. This integrated environment of smart cities maintains a balance between demand and supply. In this work, we proposed a closed-loop super twisting sliding mode controller (STSMC) to handle the uncertain and fluctuating load to maintain the balance between demand and supply persistently. Demand-side load management (DSLM) consists of agents-based demand response (DR) programs that are designed to control, change and shift the load usage pattern according to the price of the energy of a smart grid community. In smart grids, evolved DR programs are implemented which facilitate controlling of consumer demand by effective regulation services. The DSLM under price-based DR programs perform load shifting, peak clipping and valley filling to maintain the balance between demand and supply. We demonstrate a theoretical control approach for persistent demand control by dynamic price-based closed-loop STSMC. A renewable energy integrated microgrid scenario is discussed numerically to show that the demand of consumers can be controlled through STSMC, which regulates the electricity price to the DSLM agents of the smart grid community. The overall demand elasticity of the current study is represented by a first-order dynamic price generation model having a piece-wise linear price-based DR program. The simulation environment for this whole scenario is developed in MATLAB/Simulink. The simulations validate that the closed-loop price-based elastic demand control technique can trace down the generation of a renewable energy integrated microgrid

    Fractional Order State Feedback Control for Improved Lateral Stability of Semi-Autonomous Commercial Heavy Vehicles

    Get PDF
    With the growing development of autonomous and semi-autonomous large commercial heavy vehicles, the lateral stability control of articulated vehicles have caught the attention of researchers recently. Active vehicle front steering (AFS) can enhance the handling performance and stability of articulated vehicles for an emergency highway maneuver scenario. However, with large vehicles such tractor-trailers, the system becomes more complex to control and there is an increased occurrence of instabilities. This research investigates a new control scheme based on fractional calculus as a technique that ensures lateral stability of articulated large heavy vehicles during evasive highway maneuvering scenarios. The control method is first implemented to a passenger vehicle model with 2-axles based on the well-known “bicycle model”. The model is then extended and applied onto larger three-axle commercial heavy vehicles in platooning operations. To validate the proposed new control algorithm, the system is linearized and a fractional order PI state feedback control is developed based on the linearized model. Then using Matlab/Simulink, the developed fractional-order linear controller is implemented onto the non-linear tractor-trailer dynamic model. The tractor-trailer system is modeled based on the conventional integer-order techniques and then a non-integer linear controller is developed to control the system. Overall, results confirm that the proposed controller improves the lateral stability of a tractor-trailer response time by 20% as compared to a professional truck driver during an evasive highway maneuvering scenario. In addition, the effects of variable truck cargo loading and longitudinal speed are evaluated to confirm the robustness of the new control method under a variety of potential operating conditions

    Nonlinear Modeling and Control of Driving Interfaces and Continuum Robots for System Performance Gains

    Get PDF
    With the rise of (semi)autonomous vehicles and continuum robotics technology and applications, there has been an increasing interest in controller and haptic interface designs. The presence of nonlinearities in the vehicle dynamics is the main challenge in the selection of control algorithms for real-time regulation and tracking of (semi)autonomous vehicles. Moreover, control of continuum structures with infinite dimensions proves to be difficult due to their complex dynamics plus the soft and flexible nature of the manipulator body. The trajectory tracking and control of automobile and robotic systems requires control algorithms that can effectively deal with the nonlinearities of the system without the need for approximation, modeling uncertainties, and input disturbances. Control strategies based on a linearized model are often inadequate in meeting precise performance requirements. To cope with these challenges, one must consider nonlinear techniques. Nonlinear control systems provide tools and methodologies for enabling the design and realization of (semi)autonomous vehicle and continuum robots with extended specifications based on the operational mission profiles. This dissertation provides an insight into various nonlinear controllers developed for (semi)autonomous vehicles and continuum robots as a guideline for future applications in the automobile and soft robotics field. A comprehensive assessment of the approaches and control strategies, as well as insight into the future areas of research in this field, are presented.First, two vehicle haptic interfaces, including a robotic grip and a joystick, both of which are accompanied by nonlinear sliding mode control, have been developed and studied on a steer-by-wire platform integrated with a virtual reality driving environment. An operator-in-the-loop evaluation that included 30 human test subjects was used to investigate these haptic steering interfaces over a prescribed series of driving maneuvers through real time data logging and post-test questionnaires. A conventional steering wheel with a robust sliding mode controller was used for all the driving events for comparison. Test subjects operated these interfaces for a given track comprised of a double lane-change maneuver and a country road driving event. Subjective and objective results demonstrate that the driver’s experience can be enhanced up to 75.3% with a robotic steering input when compared to the traditional steering wheel during extreme maneuvers such as high-speed driving and sharp turn (e.g., hairpin turn) passing. Second, a cellphone-inspired portable human-machine-interface (HMI) that incorporated the directional control of the vehicle as well as the brake and throttle functionality into a single holistic device will be presented. A nonlinear adaptive control technique and an optimal control approach based on driver intent were also proposed to accompany the mechatronic system for combined longitudinal and lateral vehicle guidance. Assisting the disabled drivers by excluding extensive arm and leg movements ergonomically, the device has been tested in a driving simulator platform. Human test subjects evaluated the mechatronic system with various control configurations through obstacle avoidance and city road driving test, and a conventional set of steering wheel and pedals were also utilized for comparison. Subjective and objective results from the tests demonstrate that the mobile driving interface with the proposed control scheme can enhance the driver’s performance by up to 55.8% when compared to the traditional driving system during aggressive maneuvers. The system’s superior performance during certain vehicle maneuvers and approval received from the participants demonstrated its potential as an alternative driving adaptation for disabled drivers. Third, a novel strategy is designed for trajectory control of a multi-section continuum robot in three-dimensional space to achieve accurate orientation, curvature, and section length tracking. The formulation connects the continuum manipulator dynamic behavior to a virtual discrete-jointed robot whose degrees of freedom are directly mapped to those of a continuum robot section under the hypothesis of constant curvature. Based on this connection, a computed torque control architecture is developed for the virtual robot, for which inverse kinematics and dynamic equations are constructed and exploited, with appropriate transformations developed for implementation on the continuum robot. The control algorithm is validated in a realistic simulation and implemented on a six degree-of-freedom two-section OctArm continuum manipulator. Both simulation and experimental results show that the proposed method could manage simultaneous extension/contraction, bending, and torsion actions on multi-section continuum robots with decent tracking performance (e.g. steady state arc length and curvature tracking error of 3.3mm and 130mm-1, respectively). Last, semi-autonomous vehicles equipped with assistive control systems may experience degraded lateral behaviors when aggressive driver steering commands compete with high levels of autonomy. This challenge can be mitigated with effective operator intent recognition, which can configure automated systems in context-specific situations where the driver intends to perform a steering maneuver. In this article, an ensemble learning-based driver intent recognition strategy has been developed. A nonlinear model predictive control algorithm has been designed and implemented to generate haptic feedback for lateral vehicle guidance, assisting the drivers in accomplishing their intended action. To validate the framework, operator-in-the-loop testing with 30 human subjects was conducted on a steer-by-wire platform with a virtual reality driving environment. The roadway scenarios included lane change, obstacle avoidance, intersection turns, and highway exit. The automated system with learning-based driver intent recognition was compared to both the automated system with a finite state machine-based driver intent estimator and the automated system without any driver intent prediction for all driving events. Test results demonstrate that semi-autonomous vehicle performance can be enhanced by up to 74.1% with a learning-based intent predictor. The proposed holistic framework that integrates human intelligence, machine learning algorithms, and vehicle control can help solve the driver-system conflict problem leading to safer vehicle operations
    corecore