4,236 research outputs found

    Intrusion Detection System using Bayesian Network Modeling

    Get PDF
    Computer Network Security has become a critical and important issue due to ever increasing cyber-crimes. Cybercrimes are spanning from simple piracy crimes to information theft in international terrorism. Defence security agencies and other militarily related organizations are highly concerned about the confidentiality and access control of the stored data. Therefore, it is really important to investigate on Intrusion Detection System (IDS) to detect and prevent cybercrimes to protect these systems. This research proposes a novel distributed IDS to detect and prevent attacks such as denial service, probes, user to root and remote to user attacks. In this work, we propose an IDS based on Bayesian network classification modelling technique. Bayesian networks are popular for adaptive learning, modelling diversity network traffic data for meaningful classification details. The proposed model has an anomaly based IDS with an adaptive learning process. Therefore, Bayesian networks have been applied to build a robust and accurate IDS. The proposed IDS has been evaluated against the KDD DAPRA dataset which was designed for network IDS evaluation. The research methodology consists of four different Bayesian networks as classification models, where each of these classifier models are interconnected and communicated to predict on incoming network traffic data. Each designed Bayesian network model is capable of detecting a major category of attack such as denial of service (DoS). However, all four Bayesian networks work together to pass the information of the classification model to calibrate the IDS system. The proposed IDS shows the ability of detecting novel attacks by continuing learning with different datasets. The testing dataset constructed by sampling the original KDD dataset to contain balance number of attacks and normal connections. The experiments show that the proposed system is effective in detecting attacks in the test dataset and is highly accurate in detecting all major attacks recorded in DARPA dataset. The proposed IDS consists with a promising approach for anomaly based intrusion detection in distributed systems. Furthermore, the practical implementation of the proposed IDS system can be utilized to train and detect attacks in live network traffi

    Automated insider threat detection system using user and role-based profile assessment

    Get PDF
    © 2007-2012 IEEE. Organizations are experiencing an ever-growing concern of how to identify and defend against insider threats. Those who have authorized access to sensitive organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. This could range from financial theft and intellectual property theft to the destruction of property and business reputation. Traditional intrusion detection systems are neither designed nor capable of identifying those who act maliciously within an organization. In this paper, we describe an automated system that is capable of detecting insider threats within an organization. We define a tree-structure profiling approach that incorporates the details of activities conducted by each user and each job role and then use this to obtain a consistent representation of features that provide a rich description of the user's behavior. Deviation can be assessed based on the amount of variance that each user exhibits across multiple attributes, compared against their peers. We have performed experimentation using ten synthetic data-driven scenarios and found that the system can identify anomalous behavior that may be indicative of a potential threat. We also show how our detection system can be combined with visual analytics tools to support further investigation by an analyst

    Insider Threat Detection in PRODIGAL

    Get PDF
    This paper reports on insider threat detection research, during which a prototype system (PRODIGAL) was developed and operated as a testbed for exploring a range of detection and analysis methods. The data and test environment, system components, and the core method of unsupervised detection \ of insider threat leads are presented to document this work and benefit others working in the insider threat domain. \ \ We also discuss a core set of experiments evaluating the prototype’s ability to detect both known and unknown malicious insider behaviors. The experimental results show the ability to detect a large variety of insider threat scenario instances imbedded in real data with no prior knowledge of what scenarios \ are present or when they occur. \ \ We report on an ensemble-based, unsupervised technique for detecting potential insider threat instances. When run over 16 months of real monitored computer usage activity augmented with independently developed and unknown but realistic, insider threat scenarios, this technique robustly achieves results within five percent of the best individual detectors identified after the fact. We discuss factors that contribute to the success of the ensemble method, such as the number and variety of unsupervised detectors and the use of prior knowledge encoded in detectors designed for specific activity patterns. \ \ Finally, the paper describes the architecture of the prototype system, the environment in which we conducted these experiments and that is in the process of being transitioned to operational users
    corecore