27,737 research outputs found

    Towards the implementation of a preference-and uncertain-aware solver using answer set programming

    Get PDF
    Logic programs with possibilistic ordered disjunction (or LPPODs) are a recently defined logic-programming framework based on logic programs with ordered disjunction and possibilistic logic. The framework inherits the properties of such formalisms and merging them, it supports a reasoning which is nonmonotonic, preference-and uncertain-aware. The LPPODs syntax allows to specify 1) preferences in a qualitative way, and 2) necessity values about the certainty of program clauses. As a result at semantic level, preferences and necessity values can be used to specify an order among program solutions. This class of program therefore fits well in the representation of decision problems where a best option has to be chosen taking into account both preferences and necessity measures about information. In this paper we study the computation and the complexity of the LPPODs semantics and we describe the algorithm for its implementation following on Answer Set Programming approach. We describe some decision scenarios where the solver can be used to choose the best solutions by checking whether an outcome is possibilistically preferred over another considering preferences and uncertainty at the same time.Postprint (published version

    Abduction in Well-Founded Semantics and Generalized Stable Models

    Full text link
    Abductive logic programming offers a formalism to declaratively express and solve problems in areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic programming offers a computational mechanism that provides a level of declarativity superior to that of Prolog, and which has supported successful applications in fields such as parsing, program analysis, and model checking. In this paper we show how to use tabled logic programming to evaluate queries to abductive frameworks with integrity constraints when these frameworks contain both default and explicit negation. The result is the ability to compute abduction over well-founded semantics with explicit negation and answer sets. Our approach consists of a transformation and an evaluation method. The transformation adjoins to each objective literal OO in a program, an objective literal not(O)not(O) along with rules that ensure that not(O)not(O) will be true if and only if OO is false. We call the resulting program a {\em dual} program. The evaluation method, \wfsmeth, then operates on the dual program. \wfsmeth{} is sound and complete for evaluating queries to abductive frameworks whose entailment method is based on either the well-founded semantics with explicit negation, or on answer sets. Further, \wfsmeth{} is asymptotically as efficient as any known method for either class of problems. In addition, when abduction is not desired, \wfsmeth{} operating on a dual program provides a novel tabling method for evaluating queries to ground extended programs whose complexity and termination properties are similar to those of the best tabling methods for the well-founded semantics. A publicly available meta-interpreter has been developed for \wfsmeth{} using the XSB system.Comment: 48 pages; To appear in Theory and Practice in Logic Programmin

    Handling Defeasibilities in Action Domains

    Full text link
    Representing defeasibility is an important issue in common sense reasoning. In reasoning about action and change, this issue becomes more difficult because domain and action related defeasible information may conflict with general inertia rules. Furthermore, different types of defeasible information may also interfere with each other during the reasoning. In this paper, we develop a prioritized logic programming approach to handle defeasibilities in reasoning about action. In particular, we propose three action languages {\cal AT}^{0}, {\cal AT}^{1} and {\cal AT}^{2} which handle three types of defeasibilities in action domains named defeasible constraints, defeasible observations and actions with defeasible and abnormal effects respectively. Each language with a higher superscript can be viewed as an extension of the language with a lower superscript. These action languages inherit the simple syntax of {\cal A} language but their semantics is developed in terms of transition systems where transition functions are defined based on prioritized logic programs. By illustrating various examples, we show that our approach eventually provides a powerful mechanism to handle various defeasibilities in temporal prediction and postdiction. We also investigate semantic properties of these three action languages and characterize classes of action domains that present more desirable solutions in reasoning about action within the underlying action languages.Comment: 49 pages, 1 figure, to be appeared in journal Theory and Practice Logic Programmin

    A Description Logic Framework for Commonsense Conceptual Combination Integrating Typicality, Probabilities and Cognitive Heuristics

    Get PDF
    We propose a nonmonotonic Description Logic of typicality able to account for the phenomenon of concept combination of prototypical concepts. The proposed logic relies on the logic of typicality ALC TR, whose semantics is based on the notion of rational closure, as well as on the distributed semantics of probabilistic Description Logics, and is equipped with a cognitive heuristic used by humans for concept composition. We first extend the logic of typicality ALC TR by typicality inclusions whose intuitive meaning is that "there is probability p about the fact that typical Cs are Ds". As in the distributed semantics, we define different scenarios containing only some typicality inclusions, each one having a suitable probability. We then focus on those scenarios whose probabilities belong to a given and fixed range, and we exploit such scenarios in order to ascribe typical properties to a concept C obtained as the combination of two prototypical concepts. We also show that reasoning in the proposed Description Logic is EXPTIME-complete as for the underlying ALC.Comment: 39 pages, 3 figure

    A Parameterised Hierarchy of Argumentation Semantics for Extended Logic Programming and its Application to the Well-founded Semantics

    Full text link
    Argumentation has proved a useful tool in defining formal semantics for assumption-based reasoning by viewing a proof as a process in which proponents and opponents attack each others arguments by undercuts (attack to an argument's premise) and rebuts (attack to an argument's conclusion). In this paper, we formulate a variety of notions of attack for extended logic programs from combinations of undercuts and rebuts and define a general hierarchy of argumentation semantics parameterised by the notions of attack chosen by proponent and opponent. We prove the equivalence and subset relationships between the semantics and examine some essential properties concerning consistency and the coherence principle, which relates default negation and explicit negation. Most significantly, we place existing semantics put forward in the literature in our hierarchy and identify a particular argumentation semantics for which we prove equivalence to the paraconsistent well-founded semantics with explicit negation, WFSXp_p. Finally, we present a general proof theory, based on dialogue trees, and show that it is sound and complete with respect to the argumentation semantics.Comment: To appear in Theory and Practice of Logic Programmin
    • …
    corecore