697 research outputs found

    Radar, Insect Population Ecology, and Pest Management

    Get PDF
    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives

    Summary of the Active Microwave Workshop, chapter 1

    Get PDF
    An overview is given of the utility, feasibility, and advantages of active microwave sensors for a broad range of applications, including aerospace. In many instances, the material provides an in-depth examination of the applicability and/or the technology of microwave remote sensing, and considerable documentation is presented in support of these techniques. An assessment of the relative strengths and weaknesses of active microwave sensor data indicates that satisfactory data are obtainable for several significant applications

    Remote Sensing of Ocean Winds and Waves with Bistatic HF Radar

    Get PDF
    High frequency, or HF, coastal radars collect a vast amount of data on ocean currents, winds and waves. The technology continuously measures the parameters, by receiving and interpreting electromagnetic waves scattered by the ocean surface. Formulating the methods to interpret the radar data, to obtain accurate measurements, has been the focus of many researchers since the 1970s. Much of the existing research has been in monostatic radar theory, where the transmitter and receiver are stationed together. However, a larger, higher quality dataset can be obtained by utilising bistatic radar theory, whereby the transmitter and receiver are located at separate sites. In this work, the focus is on bistatic radar, where the most commonly used mathematical model for monostatic radar is adapted for bistatic radar. Methods for obtaining current, wind and wave information from the model are then described and in the case of winds and waves, tested. Investigating the derived model shows that it does not always fit the real data well, due to undesirable effects of the radar. These effects can be incorporated into the model but then the existing methods used to obtain ocean information may not be applicable. Therefore, a new method for measuring ocean waves from the model is developed. The recent advances in machine learning have been substantial, with the neural network becoming proficient at finding the link between complexly related datasets. In this work, a neural network is used to model the relationship between the developed radar model and the directional ocean spectrum. It is shown to successfully invert both monostatic and (for the first time) bistatic HF radar data and with this success, it becomes a viable option for obtaining ocean surface parameters from radar data

    ACTIVE AND PASSIVE REMOTE SENSING FOR ATMOSPHERIC APPLICATIONS

    Get PDF
    The atmosphere surrounding our planet is vital for the existence of many living organisms, including humans. Although this layer is quite thin, there are numerous components interacting with each other with processes taking place across widely different spatial and temporal scales. No single instrument is able to cover all of these scales, and therefore, in order to advance our knowledge of atmospheric processes and composition, different instruments, methods and synergy of instruments have to be applied. Remote sensing techniques offer a variety of possibilities for atmospheric research. Satellite remote sensing is exploited to get a regional or global view on the problems, to verify climate models, as well as to reach locations which are not accessible for measurements otherwise. Ground-based remote sensing allows a continuous monitoring of the vertical structure of the atmosphere and, due to exploiting various wavelengths, the observation of atmospheric compounds of various sizes from gases to aerosol particles to snowflakes. In this thesis, several remote sensing techniques have been utilized to find new methods of utilizing existing observations as well as the application of known methods to new geographical locations. A novel method is proposed for retrieving convective boundary layer height during spring and summer months using insect echoes in radar returns. Observations from several different radar frequencies were analysed and the proposed method was proven applicable at all frequencies given some limitations. Moreover, this method can serve as a platform for future research in different geographical locations where insects might behave differently. The synergy of ground-based lidar and airborne in situ measurements were used to study elevated aerosol layers in Southern Finland. Based on two cases, a clear-sky and partly cloudy case, the temporal and spatial variability of aerosol particle number concentration in the boundary layer and several elevated layers were investigated. Nucleation mode particles (the smallest aerosol sizes) were also detected in one of the elevated layers, which was probably not mixing with the boundary layer during a new particle formation event. In addition to aerosol particles, some lidars have the capability to measure water vapor profiles. Several calibration methods for this type of lidar were analysed in order to find an alternative to the usual method of using a radiosonde launched close by, since radiosondes may not always be available at every site. Output from a weather forecast model, or a radiosonde profile which was 100 km away, were both found to be reliable, whereas the use of satellite products required more caution in the absence of other methods. The seasonal variability of water vapour profiles was also studied. Satellite remote sensing observations were probed to obtain proxies of nucleation mode aerosol particles, which are otherwise not seen from space. So far, the results were not very successful, however, some bottlenecks were identified with a potential to improve the proxies in the future.Atmosfären som omger vår planet är avgörande för existensen av olika levande organismer, inklusive människor. Trots att detta lager är ganska tunt, finns det massor av komponenter som interagerar med varandra och processer som äger rum i olika rumsliga och tidsmässiga skalor. Inget enskilt instrument kan täcka alla dessa skalor och därför måste olika instrument, metoder och synergier av instrument användas för att föra fram vår kunskap om atmosfäriska processer och sammansättningar. Fjärranalysmetoder erbjuder en mängd olika möjligheter för atmosfärisk forskning. Satellitfjärranalys utnyttjas för att få en regional eller global syn på problemen, för att verifiera klimatmodeller, samt för att nå platser som annars inte är tillgängliga för mätningar. Markbaserad fjärranalys möjliggör en kontinuerlig övervakning av atmosfärens vertikala struktur och, genom att utnyttja olika våglängder, observation av atmosfäriska sammansättningar av olika storlekar från aerosolpartiklar till snöflingor. I denna avhandling har flera fjärranalysmetoder använts för att hitta nya sätt att utnyttja befintliga observationer samt för att tillämpa kända metoder på nya geografiska platser. En ny metod föreslås för att skapa en konvektiv gränsskiktshöjd under vår- och sommarmånaderna med hjälp av insektsekon i radarsignalen. Observationer från flera olika radarfrekvenser analyserades och den föreslagna metoden visade sig vara tillämpbar på alla frekvenser med vissa begränsningar. Dessutom kan denna metod fungera som en plattform för framtida forskning på olika geografiska platser där insekter kan bete sig annorlunda. Synergin mellan markbaserad lidar och luftburna in situ-mätningar användes för att studera förhöjda aerosollager i södra Finland. Den temporala och rumsliga variationen av aerosolpartikelkoncentrationen i gränsskiktet och förhöjda lager undersöktes baserat på två fall, ett med klar himmel och ett delvis molnigt. Nukleationsmodpartiklar (de minsta aerosolstorlekarna) detekterades också i ett av de förhöjda skikten, som troligtvis inte blandades med gränsskiktet under en ny partikelbildningshändelse. Förutom aerosolpartiklar har vissa lidarer förmågan att mäta vattenångsprofiler. Flera kalibreringsmetoder för denna typ av lidar analyserades för att hitta ett alternativ till den vanliga metoden att använda en radiosonde som lanseras i närheten, eftersom radiosonder inte alltid är tillgängliga på alla platser. Utdata från en väderprognosmodell eller en radiosondeprofil på 100 km avstånd, visade sig båda vara tillförlitliga, medan användningen av satellitprodukter krävde mer försiktighet i avsaknad av andra metoder. Den säsongsmässiga variationen av vattenångprofiler studerades också. Satellitfjärranalysobservationer undersöktes för att erhålla proxies för aerosolpartiklar i kärnbildningsläge, vilka annars inte kan ses från rymden. Hittills har resultaten dock inte varit särskilt framgångsrika, men vissa flaskhalsar har identifierats med potential att förbättra fullmakterna i framtiden

    Study of winds, tides and waves in the middle atmosphere

    Get PDF
    The present thesis deals with the dynamics of the troposphere and lower stratosphere which form part of the middle atmosphere. Thesis presents the results of the studies of various mechanism like, tidal oscillations and equatorial waves (contributing to

    Shuttle imaging radar-C science plan

    Get PDF
    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit

    Observing wind, aerosol particles, clouds and precipitation: Finland's new ground-based remote-sensing network

    Get PDF
    The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation – including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to the formation of a water/ice layer thus attenuating the signal inconsistently. Thus, care must be taken to ensure continuous snow removal

    Whitepaper: Understanding land-atmosphere interactions through tower-based flux and continuous atmospheric boundary layer measurements

    Get PDF
    Executive summary ● Target audience: AmeriFlux community, AmeriFlux Science Steering Committee & Department of Energy (DOE) program managers [ARM/ASR (atmosphere), TES (surface), and SBR (subsurface)] ● Problem statement: The atmospheric boundary layer mediates the exchange of energy and matter between the land surface and the free troposphere integrating a range of physical, chemical, and biological processes. However, continuous atmospheric boundary layer observations at AmeriFlux sites are still scarce. How can adding measurements of the atmospheric boundary layer enhance the scientific value of the AmeriFlux network? ● Research opportunities: We highlight four key opportunities to integrate tower-based flux measurements with continuous, long-term atmospheric boundary layer measurements: (1) to interpret surface flux and atmospheric boundary layer exchange dynamics at flux tower sites, (2) to support regionalscale modeling and upscaling of surface fluxes to continental scales, (3) to validate land-atmosphere coupling in Earth system models, and (4) to support flux footprint modelling, the interpretation of surface fluxes in heterogeneous terrain, and quality control of eddy covariance flux measurements. ● Recommended actions: Adding a suite of atmospheric boundary layer measurements to eddy covariance flux tower sites would allow the Earth science community to address new emerging research questions, to better interpret ongoing flux tower measurements, and would present novel opportunities for collaboration between AmeriFlux scientists and atmospheric and remote sensing scientists. We therefore recommend that (1) a set of instrumentation for continuous atmospheric boundary layer observations be added to a subset of AmeriFlux sites spanning a range of ecosystem types and climate zones, that (2) funding agencies (e.g., Department of Energy, NASA) solicit research on land-atmosphere processes where the benefits of fully integrated atmospheric boundary layer observations can add value to key scientific questions, and that (3) the AmeriFlux Management Project acquires loaner instrumentation for atmospheric boundary layer observations for use in experiments and short-term duration campaigns

    GNSS reflectometry for land remote sensing applications

    Get PDF
    Soil moisture and vegetation biomass are two essential parameters from a scienti c and economical point of view. On one hand, they are key for the understanding of the hydrological and carbon cycle. On the other hand, soil moisture is essential for agricultural applications and water management, and vegetation biomass is crucial for regional development programs. Several remote sensing techniques have been used to measure these two parameters. However, retrieving soil moisture and vegetation biomass with the required accuracy, and the appropriate spatial and temporal resolutions still remains a major challenge. The use of Global Navigation Satellite Systems (GNSS) reflected signals as sources of opportunity for measuring soil moisture and vegetation biomass is assessed in this PhD Thesis. This technique, commonly known as GNSS-Reflectometry (GNSS-R), has gained increasing interest among the scienti c community during the last two decades due to its unique characteristics. Previous experimental works have already shown the capabilities of GNSS-R to sense small reflectivity changes on the surface. The use of the co- and cross-polarized reflected signals was also proposed to mitigate nuisance parameters, such as soil surface roughness, in the determination of soil moisture. However, experimental evidence of the suitability of that technique could not be demonstrated. This work analyses from a theoretical and an experimental point of view the capabilities of polarimetric observations of GNSS reflected signals for monitoring soil moisture and vegetation biomass. The Thesis is structured in four main parts. The fi rst part examines the fundamental aspects of the technique and provides a detailed review of the GNSS-R state of the art for soil moisture and vegetation monitoring. The second part deals with the scattering models from land surfaces. A comprehensive description of the formation of scattered signals from rough surfaces is provided. Simulations with current state of the art models for bare and vegetated soils were performed in order to analyze the scattering components of GNSS reflected signals. A simpli ed scattering model was also developed in order to relate in a straightforward way experimental measurements to soil bio-geophysical parameters. The third part reviews the experimental work performed within this research. The development of a GNSS-R instrument for land applications is described, together with the three experimental campaigns carried out in the frame of this PhD Thesis. The analysis of the GNSS-R and ground truth data is also discussed within this part. As predicted by models, it was observed that GNSS scattered signals from natural surfaces are a combination of a coherent and an incoherent scattering components. A data analysis technique was proposed to separate both scattering contributions. The use of polarimetric observations for the determination of soil moisture was demonstrated to be useful under most soil conditions. It was also observed that forests with high levels of biomass could be observed with GNSS reflected signals. The fourth and last part of the Thesis provides an analysis of the technology perspectives. A GNSS-R End-to-End simulator was used to determine the capabilities of the technique to observe di erent soil reflectivity conditions from a low Earth orbiting satellite. It was determined that high accuracy in the estimation of reflectivity could be achieved within reasonable on-ground resolution, as the coherent scattering component is expected to be the predominant one in a spaceborne scenario. The results obtained in this PhD Thesis show the promising potential of GNSS-R measurements for land remote sensing applications, which could represent an excellent complementary observation for a wide range of Earth Observation missions such as SMOS, SMAP, and the recently approved ESA Earth Explorer Mission Biomass.La humedad del suelo y la biomasa de la vegetaci on son dos parametros clave desde un punto de vista tanto cient co como econ omico. Por una parte son esenciales para el estudio del ciclo del agua y del carbono. Por otra parte, la humedad del suelo es esencial para la gesti on de las cosechas y los recursos h dricos, mientras que la biomasa es un par ametro fundamental para ciertos programas de desarrollo. Varias formas de teledetección se han utilizado para la observaci on remota de estos par ametros, sin embargo, su monitorizaci on con la precisi on y resoluci on necesarias es todav a un importante reto tecnol ogico. Esta Tesis evalua la capacidad de medir humedad del suelo y biomasa de la vegetaci on con señales de Sistemas Satelitales de Posicionamiento Global (GNSS, en sus siglas en ingl es) reflejadas sobre la Tierra. La t ecnica se conoce como Reflectometr í a GNSS (GNSS-R), la cual ha ganado un creciente inter es dentro de la comunidad científ ca durante las dos ultimas d ecadas. Experimentos previos a este trabajo ya demostraron la capacidad de observar cambios en la reflectividad del terreno con GNSS-R. El uso de la componente copolar y contrapolar de la señal reflejada fue propuesto para independizar la medida de humedad del suelo de otros par ametros como la rugosidad del terreno. Sin embargo, no se pudo demostrar una evidencia experimental de la viabilidad de la t ecnica. En este trabajo se analiza desde un punto de vista te orico y experimental el uso de la informaci on polarim etrica de la señales GNSS reflejadas sobre el suelo para la determinaci on de humedad y biomasa de la vegetaci on. La Tesis se estructura en cuatro partes principales. En la primera parte se eval uan los aspectos fundamentales de la t ecnica y se da una revisi on detallada del estado del arte para la observaci on de humedad y vegetaci on. En la segunda parte se discuten los modelos de dispersi on electromagn etica sobre el suelo. Simulaciones con estos modelos fueron realizadas para analizar las componentes coherente e incoherente de la dispersi on de la señal reflejada sobre distintos tipos de terreno. Durante este trabajo se desarroll o un modelo de reflexi on simpli cado para poder relacionar de forma directa las observaciones con los par ametros geof sicos del suelo. La tercera parte describe las campañas experimentales realizadas durante este trabajo y discute el an alisis y la comparaci on de los datos GNSS-R con las mediciones in-situ. Como se predice por los modelos, se comprob o experimentalmente que la señal reflejada est a formada por una componente coherente y otra incoherente. Una t ecnica de an alisis de datos se propuso para la separacióon de estas dos contribuciones. Con los datos de las campañas experimentales se demonstr o el bene cio del uso de la informaci on polarim etrica en las señales GNSS reflejadas para la medici on de humedad del suelo, para la mayor a de las condiciones de rugosidad observadas. Tambi en se demostr o la capacidad de este tipo de observaciones para medir zonas boscosas densamente pobladas. La cuarta parte de la tesis analiza la capacidad de la t ecnica para observar cambios en la reflectividad del suelo desde un sat elite en orbita baja. Los resultados obtenidos muestran que la reflectividad del terreno podr a medirse con gran precisi on ya que la componente coherente del scattering ser a la predominante en ese tipo de escenarios. En este trabajo de doctorado se muestran la potencialidades de la t ecnica GNSS-R para observar remotamente par ametros del suelo tan importantes como la humedad del suelo y la biomasa de la vegetaci on. Este tipo de medidas pueden complementar un amplio rango de misiones de observaci on de la Tierra como SMOS, SMAP, y Biomass, esta ultima recientemente aprobada para la siguiente misi on Earth Explorer de la ESA
    corecore