410,332 research outputs found

    On the imaging of electron transport in semiconductor quantum structures by scanning-gate microscopy: successes and limitations

    Full text link
    This paper presents a brief review of scanning-gate microscopy applied to the imaging of electron transport in buried semiconductor quantum structures. After an introduction to the technique and to some of its practical issues, we summarise a selection of its successful achievements found in the literature, including our own research. The latter focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. Based on our own experience, we then discuss in detail some of the limitations of scanning-gate microscopy. These include possible tip induced artefacts, effects of a large bias applied to the scanning tip, as well as consequences of unwanted charge traps on the conductance maps. We emphasize how special care must be paid in interpreting these scanning-gate images.Comment: Special issue on (nano)characterization of semiconductor materials and structure

    Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy

    Full text link
    The presence of structure-dependent edge states of graphite is revealed by both ambient- and ultra-highvacuum- (UHV) scanning tunneling microscopy (STM) / scanning tunneling spectroscopy (STS) observations. On a hydrogenated zigzag (armchair) edge, bright spots are (are not) observed together with (SQRT(3) by SQRT(3))R30 superlattice near the Fermi level (V_S = −30 mV for a peak of the local density of states (LDOS)) under UHV, demonstrating that a zigzag edge is responsible for the edge states, although there is no appreciable difference between as-prepared zigzag and armchair edges in air. Even in hydrogenated armchair edge, however, bright spots are observed at defect points, at which partial zigzag edges are created in the armchair edge.Comment: 4 pages, 4 figures, contents for experimental/theoretical reseachers, accepted as an issue of Physical Review B (PRB

    Key factor for hastening the strategic issue diagnosis process: a within organisational model

    Get PDF
    Previous research on Strategic Issue Diagnosis (SID) had focused on the complexity and novelty associated with the decision-making process in a turbulent environment. What had not been previously addressed in the extant literature is the requirement for speed inherent within the SID process, especially that is related to the gathering of information and facts through an organisation’s environmental scanning procedures. Since proactive management techniques, nimble processes, and systems that allow an organisation to be responsive and build rapid decision-making capabilities are important determinants of success in a turbulent environment, the element of speed associated with SID is an important factor. Our paper identifi es a series of propositions focusing att ention on elements of the environmental scanning processes and management hierarchies that are intended to counteract the recursiveness and redundancy inherent in SID systems and ultimately hasten the strategic decision-making process

    Scanning the issue: T-ray imaging, sensing, and retection

    Get PDF
    Copyright © 2007 IEEEDerek Abbott, Xi-Cheng Zhan

    Robot trajectory planning using OLP and structured light 3D machine vision

    Get PDF
    This paper proposes a new methodology for robotic offline programming (OLP) addressing the issue of automatic program generation directly from 3D CAD models and verification through online 3D reconstruction. Limitations of current OLP include manufacturing tolerances between CAD and workpieces and inaccuracies in workpiece placement and modelled work cell. These issues are addressed and demonstrated through surface scanning, registration, and global and local error estimation. The method allows the robot to adjust the welding path designed from the CAD model to the actual workpiece. Alternatively, for non-repetitive tasks and where a CAD model is not available, it is possible to interactively define the path online over the scanned surface

    Quantum plasmonics: second-order coherence of surface plasmons launched by quantum emitters into a metallic film

    Full text link
    We address the issue of the second-order coherence of single surface plasmons launched by a quantum source of light into extended gold films. The quantum source of light is made of a scanning fluorescent nanodiamond hosting five nitrogen-vacancy (NV) color centers. By using a specially designed microscopy that combines near-field optics with far-field leakage-radiation microscopy in the Fourier space and adapted spatial filtering, we find that the quantum statistics of the initial source of light is preserved after conversion to surface plasmons and propagation along the polycrystalline gold film.Comment: Second version with minor changes made to comply with Referees' comments. Editorially approved for publication in Phys. Rev. B on 22 June 201
    • …
    corecore