495,240 research outputs found

    Scanning ultrafast electron microscopy

    Get PDF
    Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability

    Scanning electron microscopy image representativeness: morphological data on nanoparticles.

    Get PDF
    A sample of a nanomaterial contains a distribution of nanoparticles of various shapes and/or sizes. A scanning electron microscopy image of such a sample often captures only a fragment of the morphological variety present in the sample. In order to quantitatively analyse the sample using scanning electron microscope digital images, and, in particular, to derive numerical representations of the sample morphology, image content has to be assessed. In this work, we present a framework for extracting morphological information contained in scanning electron microscopy images using computer vision algorithms, and for converting them into numerical particle descriptors. We explore the concept of image representativeness and provide a set of protocols for selecting optimal scanning electron microscopy images as well as determining the smallest representative image set for each of the morphological features. We demonstrate the practical aspects of our methodology by investigating tricalcium phosphate, Ca3 (PO4 )2 , and calcium hydroxyphosphate, Ca5 (PO4 )3 (OH), both naturally occurring minerals with a wide range of biomedical applications

    Microscopy of glazed layers formed during high temperature sliding wear at 750C

    Get PDF
    The evolution of microstructures in the glazed layer formed during high temperature sliding wear of Nimonic 80A against Stellite 6 at 750 ‚ó¶C using a speed of 0.314ms‚ąí1 under a load of 7N has been investigated using scanning electron microscopy (SEM), energy dispersive analysis by X-ray (EDX), X-ray diffraction (XRD) analysis, scanning tunnelling microscopy (STM) and transmission electron microscopy (TEM). The results indicate the formation of a wear resistant nano-structured glazed layer. The mechanisms responsible for the formation of the nano-polycrystalline glazed layer are discussed

    Scanning Electron Microscopy Core

    Get PDF
    Department/Unit poster (NCNPR). Corresponding author: Vijayasankar Raman ([email protected])https://egrove.olemiss.edu/pharm_annual_posters_2022/1017/thumbnail.jp

    Scanning Electron Microscopy Core

    Get PDF
    Presenter: Vijayasankar Ramanhttps://egrove.olemiss.edu/pharm_annual_posters_2021/1007/thumbnail.jp

    A scanning electron microscopy study of the macro-crystalline structure of 2-(2,4-dinitrobenzyl) pyridine

    Get PDF
    The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope

    Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    Get PDF
    We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location
    • ‚Ķ
    corecore