3,198 research outputs found

    A low cost scheme for high precision dual-wavelength laser metrology

    Full text link
    A novel method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application where this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical with that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the non-common-path between metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Experimental multiphase estimation on a chip

    Get PDF
    Multiparameter estimation is a general problem that aims at measuring unknown physical quantities, obtaining high precision in the process. In this context, the adoption of quantum resources promises a substantial boost in the achievable performances with respect to the classical case. However, several open problems remain to be addressed in the multiparameter scenario. A crucial requirement is the identification of suitable platforms to develop and experimentally test novel efficient methodologies that can be employed in this general framework. We report the experimental implementation of a reconfigurable integrated multimode interferometer designed for the simultaneous estimation of two optical phases. We verify the high-fidelity operation of the implemented device, and demonstrate quantum-enhanced performances in two-phase estimation with respect to the best classical case, post-selected to the number of detected coincidences. This device can be employed to test general adaptive multiphase protocols due to its high reconfigurability level, and represents a powerful platform to investigate the multiparameter estimation scenario.Comment: 10+7 pages, 7+4 figure

    Higher dimensional time-energy entanglement

    Get PDF
    Judging by the compelling number of innovations based on taming quantum mechanical effects, such as the development of transistors and lasers, further research in this field promises to tackle further technological challenges in the years to come. This statement gains even more importance in the information processing scenario. Here, the growing data generation and the correspondingly higher need for more efficient computational resources and secure high bandwidth networks are central problems which need to be tackled. In this sense, the required CPU minituarization makes the design of structures at atomic levels inevitable, as foreseen by Moore's law. From these perspectives, it is necessary to concentrate further research efforts into controlling and manipulating quantum mechanical systems. This enables for example to encode quantum superposition states to tackle problems which are computationally NP hard and which therefore cannot be solved efficiently by classical computers. The only limitation affecting these solutions is the low scalability of existing quantum systems. Similarly, quantum communication schemes are devised to certify the secure transmission of quantum information, but are still limited by a low transmission bandwidth. This thesis follows the guideline defined by these research projects and aims to further increase the scalability of the quantum mechanical systems required to perform these tasks. The method used here is to encode quantum states into photons generated by spontaneous parametric down-conversion (SPDC). An intrinsic limitation of photons is that the scalability of quantum information schemes employing them is limited by the low detection efficiency of commercial single photon detectors. This is addressed by encoding higher dimensional quantum states into two photons, increasing the scalability of the scheme in comparison to multi-photon states. Further on, the encoding of quantum information into the emission-time degree of freedom improves its applicability to long distance quantum communication schemes. By doing that, the intrinsic limitations of other schemes based on the encoding into the momentum and polarization degree of freedom are overcome. This work presents results on a scalable experimental implementation of time-energy encoded higher dimensional states, demonstrating the feasibility of the scheme. Further tools are defined and used to characterize the properties of the prepared quantum states, such as their entanglement, their dimension and their preparation fidelity. Finally, the method of quantum state tomography is used to fully determine the underlying quantum states at the cost of an increased measurement effort and thus operation time. It is at this point that results obtained from the research field of compressed sensing help to decrease the necessary number of measurements. This scheme is compared with an adaptive tomography scheme designed to offer an additional reconstruction speedup. These results display the scalability of the scheme to bipartite dimensions higher than 2x8, equivalent to the encoding of quantum information into more than 6 qubits.Es ist in den letzten Jahren immer deutlicher geworden, dass weitere Forschung zur Untersuchung von quantenmechanischen Systemen durchgeführt werden muss um die wachsenden Probleme in der heutigen Informationstechnologie zu adressieren. Insbesondere sticht hier die exponentiell wachsende Nachfrage nach Computerressourcen und nach sicheren Kommunikationsprotokollen mit hoher Bandbreite hervor, um der weiter wachsenden Datengenerationsrate standzuhalten. Dies stösst auf fundamentale Grenzen, wie die erforderliche Miniaturisierung von Prozessorstrukturen (CPUs) auf atomare Dimensionen demonstriert. Von dieser Perspektive her ist es erforderlich weitere Forschung zur Kontrolle und Manipulation von Quantenzuständen durchzuführen, wie sie zum Beispiel im Feld der Quanteninformation erfolgt ist. Diese Strategie ermöglicht es von weiteren Eigenschaften der Quantenmechanik, wie zum Beispiel der Präparation von Superpositionszuständen, Gebrauch zu machen. Dies ist insbesondere relevant, da es ermöglicht NP harte Probleme zu lösen, die durch klassische Computer nicht effizient gelöst werden können. Allerdings sind bisher experimentell realisierte quantenmechanische Systeme noch nicht skalierbar genug um den Anforderungen der klassischen Technologie gerecht zu werden. Ähnlichen Argumenten folgend sind Quantenkommunikationssysteme, die die Sicherheit von Kommunikationsprotokolle zertifizieren können, noch nicht in der Lage angemessene Bandbreiten zu gewährleisten. Diese Doktorarbeit gliedert sich diesen Forschungsprojekten an, mit dem Ziel die Skalierbarkeit von quantenmechanischen Systemen zu vergrössern und entsprechend den genannten Anforderungen gerecht zu machen. Die Strategie die hier verfolgt wird basiert auf die Kodierung von Quantenzuständen in Photonenpaare, die durch den Prozess der Spontanen Parametrischen Down-conversion (SPDC) erzeugt werden. Dieses Verfahren bringt allerdings eine limitierte Skalierbarkeit der Quantensysteme mit sich, da die Detektionseffizienz von kommerziell erhältlichen Einzelphotonendetektoren limitiert ist. Dieses Problem wird in dieser Arbeit umgangen indem die Quantenzustände in höher dimensionale Hilberträume eines Zweiphotonenzustands kodiert werden, was einen deutlichen Vorteil gegenüber der Kodierung in einen Mehrphotonenzustand darstellt. Darüber hinaus ermöglicht die Kodierung der Quantenzustände in den Emissionszeit Freiheitsgrad der Photonen intrinsische Vorteile bei ihrer Anwendung auf die Quantenkommunikation. Hier ist insbesondere der Vorteil gegenüber der Kodierung in den Impuls- und Polarisationsfreiheitsgrad gemeint, die durch deutliche Einschränkungen bei der Transmission über lange Strecken gekennzeichnet sind. Mit einem Augenmerk auf diese Ziele wird in dieser Arbeit die experimentelle Umsetzbarkeit des beschriebenen Schemas gezeigt. Dies wurde durch die Anwendung von geeigneten Maßen wie die Verschränkung, Dimension und Präparationsfidelity auf die generierten Zustände quantifiziert. Insbesondere bei der Abschätzung der Fidelity wurde von Forschungsergebnissen rund um Compressed Sensing Gebrauch gemacht und weiter mit einem adaptiven Messschema kombiniert, um die effektive Betriebszeit dieser Systeme zu verringern. Dies ist für die weitere skalierbare Anwendung zur Quanteninformationsverarbeitung von Vorteil. Die Ergebnisse verdeutlichen, dass eine Skalierbarkeit der Dimension des Systems auf grösser als 2x8 Dimensionen, äquivalent zur Dimension eines 6-Qubit Zustands, in der Reichweite einer experimentellen Umsetzung liegt

    Low-cost scheme for high-precision dual-wavelength laser metrology

    No full text
    A method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology, which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application in which this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers, although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing the cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical to that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the noncommon path between metrology and science channels.This research was supported under the Australian Research Council’s Discovery Project funding scheme. Y. K. was supported by the University of Sydney International Scholarship (USydIS)

    Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Get PDF
    Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission

    Trajectory generation for lane-change maneuver of autonomous vehicles

    Get PDF
    Lane-change maneuver is one of the most thoroughly investigated automatic driving operations that can be used by an autonomous self-driving vehicle as a primitive for performing more complex operations like merging, entering/exiting highways or overtaking another vehicle. This thesis focuses on two coherent problems that are associated with the trajectory generation for lane-change maneuvers of autonomous vehicles in a highway scenario: (i) an effective velocity estimation of neighboring vehicles under different road scenarios involving linear and curvilinear motion of the vehicles, and (ii) trajectory generation based on the estimated velocities of neighboring vehicles for safe operation of self-driving cars during lane-change maneuvers. ^ We first propose a two-stage, interactive-multiple-model-based estimator to perform multi-target tracking of neighboring vehicles in a lane-changing scenario. The first stage deals with an adaptive window based turn-rate estimation for tracking maneuvering target vehicles using Kalman filter. In the second stage, variable-structure models with updated estimated turn-rate are utilized to perform data association followed by velocity estimation. Based on the estimated velocities of neighboring vehicles, piecewise Bezier-curve-based methods that minimize the safety/collision risk involved and maximize the comfort ride have been developed for the generation of desired trajectory for lane-change maneuvers. The proposed velocity-estimation and trajectory-generation algorithms have been validated experimentally using Pioneer3- DX mobile robots in a simulated lane-change environment as well as validated by computer simulations
    • …
    corecore