2,656 research outputs found

    Large-scale Point Cloud Registration Based on Graph Matching Optimization

    Full text link
    Point Clouds Registration is a fundamental and challenging problem in 3D computer vision. It has been shown that the isometric transformation is an essential property in rigid point cloud registration, but the existing methods only utilize it in the outlier rejection stage. In this paper, we emphasize that the isometric transformation is also important in the feature learning stage for improving registration quality. We propose a \underline{G}raph \underline{M}atching \underline{O}ptimization based \underline{Net}work (denoted as GMONet for short), which utilizes the graph matching method to explicitly exert the isometry preserving constraints in the point feature learning stage to improve %refine the point representation. Specifically, we %use exploit the partial graph matching constraint to enhance the overlap region detection abilities of super points (i.e.,i.e., down-sampled key points) and full graph matching to refine the registration accuracy at the fine-level overlap region. Meanwhile, we leverage the mini-batch sampling to improve the efficiency of the full graph matching optimization. Given high discriminative point features in the evaluation stage, we utilize the RANSAC approach to estimate the transformation between the scanned pairs. The proposed method has been evaluated on the 3DMatch/3DLoMatch benchmarks and the KITTI benchmark. The experimental results show that our method achieves competitive performance compared with the existing state-of-the-art baselines

    X-ICP: Localizability-Aware LiDAR Registration for Robust Localization in Extreme Environments

    Full text link
    Modern robotic systems are required to operate in challenging environments, which demand reliable localization under challenging conditions. LiDAR-based localization methods, such as the Iterative Closest Point (ICP) algorithm, can suffer in geometrically uninformative environments that are known to deteriorate point cloud registration performance and push optimization toward divergence along weakly constrained directions. To overcome this issue, this work proposes i) a robust fine-grained localizability detection module, and ii) a localizability-aware constrained ICP optimization module, which couples with the localizability detection module in a unified manner. The proposed localizability detection is achieved by utilizing the correspondences between the scan and the map to analyze the alignment strength against the principal directions of the optimization as part of its fine-grained LiDAR localizability analysis. In the second part, this localizability analysis is then integrated into the scan-to-map point cloud registration to generate drift-free pose updates by enforcing controlled updates or leaving the degenerate directions of the optimization unchanged. The proposed method is thoroughly evaluated and compared to state-of-the-art methods in simulated and real-world experiments, demonstrating the performance and reliability improvement in LiDAR-challenging environments. In all experiments, the proposed framework demonstrates accurate and generalizable localizability detection and robust pose estimation without environment-specific parameter tuning.Comment: 20 Pages, 20 Figures Submitted to IEEE Transactions On Robotics. Supplementary Video: https://youtu.be/SviLl7q69aA Project Website: https://sites.google.com/leggedrobotics.com/x-ic

    La traduzione specializzata all’opera per una piccola impresa in espansione: la mia esperienza di internazionalizzazione in cinese di Bioretics© S.r.l.

    Get PDF
    Global markets are currently immersed in two all-encompassing and unstoppable processes: internationalization and globalization. While the former pushes companies to look beyond the borders of their country of origin to forge relationships with foreign trading partners, the latter fosters the standardization in all countries, by reducing spatiotemporal distances and breaking down geographical, political, economic and socio-cultural barriers. In recent decades, another domain has appeared to propel these unifying drives: Artificial Intelligence, together with its high technologies aiming to implement human cognitive abilities in machinery. The “Language Toolkit – Le lingue straniere al servizio dell’internazionalizzazione dell’impresa” project, promoted by the Department of Interpreting and Translation (Forlì Campus) in collaboration with the Romagna Chamber of Commerce (Forlì-Cesena and Rimini), seeks to help Italian SMEs make their way into the global market. It is precisely within this project that this dissertation has been conceived. Indeed, its purpose is to present the translation and localization project from English into Chinese of a series of texts produced by Bioretics© S.r.l.: an investor deck, the company website and part of the installation and use manual of the Aliquis© framework software, its flagship product. This dissertation is structured as follows: Chapter 1 presents the project and the company in detail; Chapter 2 outlines the internationalization and globalization processes and the Artificial Intelligence market both in Italy and in China; Chapter 3 provides the theoretical foundations for every aspect related to Specialized Translation, including website localization; Chapter 4 describes the resources and tools used to perform the translations; Chapter 5 proposes an analysis of the source texts; Chapter 6 is a commentary on translation strategies and choices

    Vision-based safe autonomous UAV landing with panoramic sensors

    Get PDF
    The remarkable growth of unmanned aerial vehicles (UAVs) has also raised concerns about safety measures during their missions. To advance towards safer autonomous aerial robots, this thesis strives to develop a safe autonomous UAV landing solution, a vital part of every UAV operation. The project proposes a vision-based framework for monitoring the landing area by leveraging the omnidirectional view of a single panoramic camera pointing upwards to detect and localize any person within the landing zone. Then, it sends this information to approaching UAVs to either hover and wait or adaptively search for a more optimal position to land themselves. We utilize and fine-tune the YOLOv7 object detection model, an XGBooxt model for localizing nearby people, and the open-source ROS and PX4 frameworks for communications and drone control. We present both simulation and real-world indoor experimental results to demonstrate the capability of our methods

    MOVES: Movable and Moving LiDAR Scene Segmentation in Label-Free settings using Static Reconstruction

    Full text link
    Accurate static structure reconstruction and segmentation of non-stationary objects is of vital importance for autonomous navigation applications. These applications assume a LiDAR scan to consist of only static structures. In the real world however, LiDAR scans consist of non-stationary dynamic structures - moving and movable objects. Current solutions use segmentation information to isolate and remove moving structures from LiDAR scan. This strategy fails in several important use-cases where segmentation information is not available. In such scenarios, moving objects and objects with high uncertainty in their motion i.e. movable objects, may escape detection. This violates the above assumption. We present MOVES, a novel GAN based adversarial model that segments out moving as well as movable objects in the absence of segmentation information. We achieve this by accurately transforming a dynamic LiDAR scan to its corresponding static scan. This is obtained by replacing dynamic objects and corresponding occlusions with static structures which were occluded by dynamic objects. We leverage corresponding static-dynamic LiDAR pairs.Comment: 35 pages, 8 figures, 6 table

    Autonomous Vehicles an overview on system, cyber security, risks, issues, and a way forward

    Full text link
    This chapter explores the complex realm of autonomous cars, analyzing their fundamental components and operational characteristics. The initial phase of the discussion is elucidating the internal mechanics of these automobiles, encompassing the crucial involvement of sensors, artificial intelligence (AI) identification systems, control mechanisms, and their integration with cloud-based servers within the framework of the Internet of Things (IoT). It delves into practical implementations of autonomous cars, emphasizing their utilization in forecasting traffic patterns and transforming the dynamics of transportation. The text also explores the topic of Robotic Process Automation (RPA), illustrating the impact of autonomous cars on different businesses through the automation of tasks. The primary focus of this investigation lies in the realm of cybersecurity, specifically in the context of autonomous vehicles. A comprehensive analysis will be conducted to explore various risk management solutions aimed at protecting these vehicles from potential threats including ethical, environmental, legal, professional, and social dimensions, offering a comprehensive perspective on their societal implications. A strategic plan for addressing the challenges and proposing strategies for effectively traversing the complex terrain of autonomous car systems, cybersecurity, hazards, and other concerns are some resources for acquiring an understanding of the intricate realm of autonomous cars and their ramifications in contemporary society, supported by a comprehensive compilation of resources for additional investigation. Keywords: RPA, Cyber Security, AV, Risk, Smart Car

    SC-NeRF: Self-Correcting Neural Radiance Field with Sparse Views

    Full text link
    In recent studies, the generalization of neural radiance fields for novel view synthesis task has been widely explored. However, existing methods are limited to objects and indoor scenes. In this work, we extend the generalization task to outdoor scenes, trained only on object-level datasets. This approach presents two challenges. Firstly, the significant distributional shift between training and testing scenes leads to black artifacts in rendering results. Secondly, viewpoint changes in outdoor scenes cause ghosting or missing regions in rendered images. To address these challenges, we propose a geometric correction module and an appearance correction module based on multi-head attention mechanisms. We normalize rendered depth and combine it with light direction as query in the attention mechanism. Our network effectively corrects varying scene structures and geometric features in outdoor scenes, generalizing well from object-level to unseen outdoor scenes. Additionally, we use appearance correction module to correct appearance features, preventing rendering artifacts like blank borders and ghosting due to viewpoint changes. By combining these modules, our approach successfully tackles the challenges of outdoor scene generalization, producing high-quality rendering results. When evaluated on four datasets (Blender, DTU, LLFF, Spaces), our network outperforms previous methods. Notably, compared to MVSNeRF, our network improves average PSNR from 19.369 to 25.989, SSIM from 0.838 to 0.889, and reduces LPIPS from 0.265 to 0.224 on Spaces outdoor scenes

    Simultaneous Localization and Mapping and Tag-Based Navigation for Unmanned Aerial Vehicles

    Get PDF
    This paper presents navigation techniques for an Unmanned Aerial Vehicle (UAV) in a virtual simulation of an indoor environment using Simultaneous Localization and Mapping (SLAM) and April Tag markers to reach a target destination. In many cases, UAVs can access locations that are inaccessible to people or regular vehicles in indoor environments, making them valuable for surveillance purposes. This study employs the Robot Operating System (ROS) to simulate SLAM techniques using LIDAR and GMapping packages for UAV navigation in two different environments. In the Tag-based simulation, the input topic for April Tag in ROS is camera images, and the calibration of position with a tag is done through assigning a message to each ID and its marker image. On the other hand, navigation in SLAM was achieved using a global and local planner algorithm. For localization, an Adaptive Monte-Carlo Localization (AMCL) technique has been used to identify factors contributing to inconsistent mapping results, such as heavy computational load, grid mapping accuracy, and inadequate UAV localization. Furthermore, this study analyzed the April Tag-based navigation algorithm, which showed satisfactory outcomes due to its lighter computing requirements. It can be ascertained that by using ROS packages, the simulation of SLAM and Tag-based UAV navigation inside a building can be achieved. &nbsp

    Off the Radar: Uncertainty-Aware Radar Place Recognition with Introspective Querying and Map Maintenance

    Full text link
    Localisation with Frequency-Modulated Continuous-Wave (FMCW) radar has gained increasing interest due to its inherent resistance to challenging environments. However, complex artefacts of the radar measurement process require appropriate uncertainty estimation to ensure the safe and reliable application of this promising sensor modality. In this work, we propose a multi-session map management system which constructs the best maps for further localisation based on learned variance properties in an embedding space. Using the same variance properties, we also propose a new way to introspectively reject localisation queries that are likely to be incorrect. For this, we apply robust noise-aware metric learning, which both leverages the short-timescale variability of radar data along a driven path (for data augmentation) and predicts the downstream uncertainty in metric-space-based place recognition. We prove the effectiveness of our method over extensive cross-validated tests of the Oxford Radar RobotCar and MulRan dataset. In this, we outperform the current state-of-the-art in radar place recognition and other uncertainty-aware methods when using only single nearest-neighbour queries. We also show consistent performance increases when rejecting queries based on uncertainty over a difficult test environment, which we did not observe for a competing uncertainty-aware place recognition system.Comment: 8 pages, 6 figure
    • …
    corecore