409 research outputs found

    Identifying worst case test vectors for FPGA exposed to total ionization dose using design for testability techniques

    Get PDF
    Electronic devices often operate in harsh environments which contain a variation of radiation sources. Radiation may cause different kinds of damage to proper operation of the devices. Their sources can be found in terrestrial environments, or in extra-terrestrial environments like in space, or in man-made radiation sources like nuclear reactors, biomedical devices and high energy particles physics experiments equipment. Depending on the operation environment of the device, the radiation resultant effect manifests in several forms like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). TID effect causes an increase in the delay and the leakage current of CMOS circuits which may damage the proper operation of the integrated circuit. To ensure proper operation of these devices under radiation, thorough testing must be made especially in critical applications like space and military applications. Although the standard which describes the procedure for testing electronic devices under radiation emphasizes the use of worst case test vectors (WCTVs), they are never used in radiation testing due to the difficulty of generating these vectors for circuits under test. For decades, design for testability (DFT) has been the best choice for test engineers to test digital circuits in industry. It has become a very mature technology that can be relied on. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Surprisingly, however, radiation testing has not yet made use of this reliable technology. In this thesis, a novel methodology is proposed to extend the usage of DFT to generate WCTVs for delay failure in Flash based field programmable gate arrays (FPGAs) exposed to total ionizing dose (TID). The methodology is validated using MicroSemi ProASIC3 FPGA and cobalt 60 facility

    A comprehensive comparison between design for testability techniques for total dose testing of flash-based FPGAs

    Get PDF
    Radiation sources exist in different kinds of environments where electronic devices often operate. Correct device operation is usually affected negatively by radiation. The radiation resultant effect manifests in several forms depending on the operating environment of the device like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). CMOS circuits and Floating gate MOS circuits suffer from an increase in the delay and the leakage current due to TID effect. This may damage the proper operation of the integrated circuit. Exhaustive testing is needed for devices operating in harsh conditions like space and military applications to ensure correct operations in the worst circumstances. The use of worst case test vectors (WCTVs) for testing is strongly recommended by MIL-STD-883, method 1019, which is the standard describing the procedure for testing electronic devices under radiation. However, the difficulty of generating these test vectors hinders their use in radiation testing. Testing digital circuits in the industry is usually done nowadays using design for testability (DFT) techniques as they are very mature and can be relied on. DFT techniques include, but not limited to, ad-hoc technique, built-in self test (BIST), muxed D scan, clocked scan and enhanced scan. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Despite all these recommendations for DFT, radiation testing has not benefited from this reliable technology yet. Also, with the big variation in the DFT techniques, choosing the right technique is the bottleneck to achieve the best results for TID testing. In this thesis, a comprehensive comparison between different DFT techniques for TID testing of flash-based FPGAs is made to help designers choose the best suitable DFT technique depending on their application. The comparison includes muxed D scan technique, clocked scan technique and enhanced scan technique. The comparison is done using ISCAS-89 benchmarks circuits. Points of comparisons include FPGA resources utilization, difficulty of designs bring-up, added delay by DFT logic and robust testable paths in each technique

    Testing of leakage current failure in ASIC devices exposed to total ionizing dose environment using design for testability techniques

    Get PDF
    Due to the advancements in technology, electronic devices have been relied upon to operate under harsh conditions. Radiation is one of the main causes of different failures of the electronics devices. According to the operation environment, the sources of the radiation can be terrestrial or extra-terrestrial. For terrestrial the devices can be used in nuclear reactors or biomedical devices where the radiation is man-made. While for the extra- terrestrial, the devices can be used in satellites, the international space station or spaceships, where the radiation comes from various sources like the Sun. According to the operation environment the effects of radiation differ. These effects falls under two categories, total ionizing dose effect (TID) and single event effects (SEEs). TID effects can be affect the delay and leakage current of CMOS circuits negatively. The affects can therefore hinder the integrated circuits\u27 operation. Before the circuits are used, particularly in critical radiation heavy applications like military and space, testing under radiation must be done to avoid any failures during operation. The standard in testing electronic devices is generating worst case test vectors (WCTVs) and under radiation using these vectors the circuits are tested. However, the generation of these WCTVs have been very challenging so this approach is rarely used for TIDs effects. Design for testability (DFT) have been widely used in the industry for digital circuits testing applications. DFT is usually used with automatic test patterns generation software to generate test vectors against fault models of manufacturer defects for application specific integrated circuit (ASIC.) However, it was never used to generate test vectors for leakage current testing induced in ASICs exposed to TID radiation environment. The purpose of the thesis is to use DFT to identify WCTVs for leakage current failures in sequential circuits for ASIC devices exposed to TID. A novel methodology was devised to identify these test vectors. The methodology is validated and compared to previous non DFT methods. The methodology is proven to overcome the limitation of previous methodologies

    Commissioning Perspectives for the ATLAS Pixel Detector

    Get PDF
    The ATLAS Pixel Detector, the innermost sub-detector of the ATLAS experiment at the Large Hadron Collider, CERN, is an 80 million channel silicon pixel tracking detector designed for high-precision charged particle tracking and secondary vertex reconstruction. It was installed in the ATLAS experiment and commissioning for the first proton-proton collision data taking in 2008 has begun. Due to the complex layout and limited accessibility, quality assurance measurements were continuously performed during production and assembly to ensure that no problematic components are integrated. The assembly of the detector at CERN and related quality assurance measurement results, including comparison to previous production measurements, will be presented. In order to verify that the integrated detector, its data acquisition readout chain, the ancillary services and cooling system as well as the detector control and data acquisition software perform together as expected approximately 8% of the detector system was progressively assembled as close to the final layout as possible. The so-called System Test laboratory setup was operated for several months under experiment-like environment conditions. The interplay between different detector components was studied with a focus on the performance and tunability of the optical data transmission system. Operation and optical tuning procedures were developed and qualified for the upcoming commission ing. The front-end electronics preamplifier threshold tuning and noise performance were studied and noise occupancy of the detector with low sensor bias voltages was investigated. Data taking with cosmic muons was performed to test the data acquisition and trigger system as well as the offline reconstruction and analysis software. The data quality was verified with an extended version of the pixel online monitoring package which was implemented for the ATLAS Combined Testbeam. The detector raw data of the Combined Testbeam and of the System Test cosmic run was converted for offline data analysis with the Pixel bytestream converter which was continuously extended and adapted according to the offline analysis software needs

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    A Light Calibration System for the ProtoDUNE-DP Detector

    Full text link
    A LED-based fiber calibration system for the ProtoDUNE-Dual Phase (DP) photon detection system (PDS) has been designed and validated. ProtoDUNE-DP is a 6x6x6 m3 liquid argon time-projection-chamber currently being installed at the Neutrino Platform at CERN. The PDS is based on 36 8-inch photomultiplier tubes (PMTs) and will allow triggering on cosmic rays. The system serves as prototype for the PDS of the final DUNE DP far detector in which the PDS also has the function to allow the 3D event reconstruction on non-beam physics. For this purpose an equalized PMT response is desirable to allow using the same threshold definition for all PMT groups, simplifying the determination of the trigger efficiency. The light calibration system described in this paper is developed to provide this and to monitor the PMT performance in-situ.Comment: 15 pages, 5 figure

    IEEE Standard 1500 Compliance Verification for Embedded Cores

    Get PDF
    Core-based design and reuse are the two key elements for an efficient system-on-chip (SoC) development. Unfortunately, they also introduce new challenges in SoC testing, such as core test reuse and the need of a common test infrastructure working with cores originating from different vendors. The IEEE 1500 Standard for Embedded Core Testing addresses these issues by proposing a flexible hardware test wrapper architecture for embedded cores, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Several intellectual property providers have already announced IEEE Standard 1500 compliance in both existing and future design blocks. In this paper, we address the problem of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE Standard 1500. This step is mandatory to fully trust the wrapper functionalities in applying the test sequences to the core. We present a systematic methodology to build a verification framework for IEEE Standard 1500 compliant cores, allowing core providers and/or integrators to verify the compliance of their products (sold or purchased) to the standar

    FPGA controlled reconfigurable antenna

    Get PDF
    At the present time, the advantages of reconfigurable antennas are numerous but limited by the method of controlling their configuration. This thesis proposes to utilize the advantages of Field Programmable Gate Arrays (FPGAs) to overcome this dilemma. Two experimental antennas are designed. The first reconfigurable antenna consists of two patches connected by two diodes. The second reconfigurable antenna has sixteen possible combinations and is designed with four perimeter patches also connected via diodes. The electromagnetic modelling software HFSS is utilized to predict the resulting radiation patterns and resonances of the possible configurations. A computer program is created to interface a user with the FPGA controlling the antenna. A module for receiving instructions and asserting biasing signals is programmed onto the FPGA. Finally, a prototype antenna is fabricated using a mechanical etching machine. Experimental results are examined using a network analyzer. The FPGA system is connected to the reconfigurable antenna. Both experimental and theoretical results show that configurable tuning is achieved

    Transition Faults and Transition Path Delay Faults: Test Generation, Path Selection, and Built-In Generation of Functional Broadside Tests

    Get PDF
    As the clock frequency and complexity of digital integrated circuits increase rapidly, delay testing is indispensable to guarantee the correct timing behavior of the circuits. In this dissertation, we describe methods developed for three aspects of delay testing in scan-based circuits: test generation, path selection and built-in test generation. We first describe a deterministic broadside test generation procedure for a path delay fault model named the transition path delay fault model, which captures both large and small delay defects. Under this fault model, a path delay fault is detected only if all the individual transition faults along the path are detected by the same test. To reduce the complexity of test generation, sub-procedures with low complexity are applied before a complete branch-and-bound procedure. Next, we describe a method based on static timing analysis to select critical paths for test generation. Logic conditions that are necessary for detecting a path delay fault are considered to refine the accuracy of static timing analysis, using input necessary assignments. Input necessary assignments are input values that must be assigned to detect a fault. The method calculates more accurate path delays, selects paths that are critical during test application, and identifies undetectable path delay faults. These two methods are applicable to off-line test generation. For large circuits with high complexity and frequency, built-in test generation is a cost-effective method for delay testing. For a circuit that is embedded in a larger design, we developed a method for built-in generation of functional broadside tests to avoid excessive power dissipation during test application and the overtesting of delay faults, taking the functional constraints on the primary input sequences of the circuit into consideration. Functional broadside tests are scan-based two-pattern tests for delay faults that create functional operation conditions during test application. To avoid the potential fault coverage loss due to the exclusive use of functional broadside tests, we also developed an optional DFT method based on state holding to improve fault coverage. High delay fault coverage can be achieved by the developed method for benchmark circuits using simple hardware

    A unified approach for the synthesis of self-testable finite state machines

    Get PDF
    Conventionally self-test hardware is added after synthesis is completed. For highly sequential circuits like controllers this design method either leads to high hardware overheads or compromises fault coverage. In this paper we outline a unified approach for considering self-test hardware like pattern generators and signature registers during synthesis. Three novel target structures are presented, and a method for designing parallel self-testable circuits is discussed in more detail. For a collection of benchmark circuits we show that hardware overheads for self-testable circuits can be significantly reduced this way without sacrificing testability
    corecore