1,159 research outputs found

    Multi-criteria Evolution of Neural Network Topologies: Balancing Experience and Performance in Autonomous Systems

    Full text link
    Majority of Artificial Neural Network (ANN) implementations in autonomous systems use a fixed/user-prescribed network topology, leading to sub-optimal performance and low portability. The existing neuro-evolution of augmenting topology or NEAT paradigm offers a powerful alternative by allowing the network topology and the connection weights to be simultaneously optimized through an evolutionary process. However, most NEAT implementations allow the consideration of only a single objective. There also persists the question of how to tractably introduce topological diversification that mitigates overfitting to training scenarios. To address these gaps, this paper develops a multi-objective neuro-evolution algorithm. While adopting the basic elements of NEAT, important modifications are made to the selection, speciation, and mutation processes. With the backdrop of small-robot path-planning applications, an experience-gain criterion is derived to encapsulate the amount of diverse local environment encountered by the system. This criterion facilitates the evolution of genes that support exploration, thereby seeking to generalize from a smaller set of mission scenarios than possible with performance maximization alone. The effectiveness of the single-objective (optimizing performance) and the multi-objective (optimizing performance and experience-gain) neuro-evolution approaches are evaluated on two different small-robot cases, with ANNs obtained by the multi-objective optimization observed to provide superior performance in unseen scenarios

    Socially Cognizant Robotics for a Technology Enhanced Society

    Full text link
    Emerging applications of robotics, and concerns about their impact, require the research community to put human-centric objectives front-and-center. To meet this challenge, we advocate an interdisciplinary approach, socially cognizant robotics, which synthesizes technical and social science methods. We argue that this approach follows from the need to empower stakeholder participation (from synchronous human feedback to asynchronous societal assessment) in shaping AI-driven robot behavior at all levels, and leads to a range of novel research perspectives and problems both for improving robots' interactions with individuals and impacts on society. Drawing on these arguments, we develop best practices for socially cognizant robot design that balance traditional technology-based metrics (e.g. efficiency, precision and accuracy) with critically important, albeit challenging to measure, human and society-based metrics

    SACSoN: Scalable Autonomous Data Collection for Social Navigation

    Full text link
    Machine learning provides a powerful tool for building socially compliant robotic systems that go beyond simple predictive models of human behavior. By observing and understanding human interactions from past experiences, learning can enable effective social navigation behaviors directly from data. However, collecting navigation data in human-occupied environments may require teleoperation or continuous monitoring, making the process prohibitively expensive to scale. In this paper, we present a scalable data collection system for vision-based navigation, SACSoN, that can autonomously navigate around pedestrians in challenging real-world environments while encouraging rich interactions. SACSoN uses visual observations to observe and react to humans in its vicinity. It couples this visual understanding with continual learning and an autonomous collision recovery system that limits the involvement of a human operator, allowing for better dataset scaling. We use a this system to collect the SACSoN dataset, the largest-of-its-kind visual navigation dataset of autonomous robots operating in human-occupied spaces, spanning over 75 hours and 4000 rich interactions with humans. Our experiments show that collecting data with a novel objective that encourages interactions, leads to significant improvements in downstream tasks such as inferring pedestrian dynamics and learning socially compliant navigation behaviors. We make videos of our autonomous data collection system and the SACSoN dataset publicly available on our project page.Comment: 9 pages, 12 figures, 4 table

    Tracking Target Signal Strengths on a Grid using Sparsity

    Get PDF
    Multi-target tracking is mainly challenged by the nonlinearity present in the measurement equation, and the difficulty in fast and accurate data association. To overcome these challenges, the present paper introduces a grid-based model in which the state captures target signal strengths on a known spatial grid (TSSG). This model leads to \emph{linear} state and measurement equations, which bypass data association and can afford state estimation via sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of the novel model, two types of sparsity-cognizant TSSG-KF trackers are developed: one effects sparsity through â„“1\ell_1-norm regularization, and the other invokes sparsity as an extra measurement. Iterative extended KF and Gauss-Newton algorithms are developed for reduced-complexity tracking, along with accurate error covariance updates for assessing performance of the resultant sparsity-aware state estimators. Based on TSSG state estimates, more informative target position and track estimates can be obtained in a follow-up step, ensuring that track association and position estimation errors do not propagate back into TSSG state estimates. The novel TSSG trackers do not require knowing the number of targets or their signal strengths, and exhibit considerably lower complexity than the benchmark hidden Markov model filter, especially for a large number of targets. Numerical simulations demonstrate that sparsity-cognizant trackers enjoy improved root mean-square error performance at reduced complexity when compared to their sparsity-agnostic counterparts.Comment: Submitted to IEEE Trans. on Signal Processin

    A COMPARATIVE ANALYSIS OF GLOBAL POSITIONING SYSTEM SCHEMES BASED ON BLOCK CODES

    Get PDF
    Global Positioning System (GPS) is a satellite based positioning system based on radio ranging technique. The GPS will provide very accurate three-dimensional position, velocity and timing information to users anywhere in the world. GPS can also be used in other applications such as vehicle monitoring for traffic management in urban areas, Geographical Information System (GIS), 4G Communications, marine navigation, search and rescue and military applications. As GPS accuracy is limited by ionospheric effects, this course also covers the basics of ionosphere and its effects on GPS. Navigation is the art of directing a vehicle such as aircraft or a person from one point to another point. Some of the prominent advantages of the GPS are: Land based system problems like ground reflections, electromagnetic interference, reflections from physical systems are avoided in GPS since it is space constellation, Intentional interference like jamming, unintentional interference will not affect GPS since spread spectrum techniques are used in it, System accuracy can be improved to the order of centimeters using differential techniques, Smaller size and reduced cost of the GPS receiver enable it to be used in 3G Communication. In this paper, a literature review of existing GPS schemes based on block codes that mainly targets towards finding out the tolerance to signals from other GPS satellites sharing the same frequency band (multiple access capability), analyzing the tolerance to some level of multipath interference, there are many potential sources of multipath reflection (example man-made or natural object) and finding out the tolerance to reasonable levels of unintentional or intentional interference, jamming or spoofing by signal designed to mimic a GPS signal

    Multi-task Deep Reinforcement Learning with PopArt

    Full text link
    The reinforcement learning community has made great strides in designing algorithms capable of exceeding human performance on specific tasks. These algorithms are mostly trained one task at the time, each new task requiring to train a brand new agent instance. This means the learning algorithm is general, but each solution is not; each agent can only solve the one task it was trained on. In this work, we study the problem of learning to master not one but multiple sequential-decision tasks at once. A general issue in multi-task learning is that a balance must be found between the needs of multiple tasks competing for the limited resources of a single learning system. Many learning algorithms can get distracted by certain tasks in the set of tasks to solve. Such tasks appear more salient to the learning process, for instance because of the density or magnitude of the in-task rewards. This causes the algorithm to focus on those salient tasks at the expense of generality. We propose to automatically adapt the contribution of each task to the agent's updates, so that all tasks have a similar impact on the learning dynamics. This resulted in state of the art performance on learning to play all games in a set of 57 diverse Atari games. Excitingly, our method learned a single trained policy - with a single set of weights - that exceeds median human performance. To our knowledge, this was the first time a single agent surpassed human-level performance on this multi-task domain. The same approach also demonstrated state of the art performance on a set of 30 tasks in the 3D reinforcement learning platform DeepMind Lab

    Reactive Reinforcement Learning in Asynchronous Environments

    Full text link
    The relationship between a reinforcement learning (RL) agent and an asynchronous environment is often ignored. Frequently used models of the interaction between an agent and its environment, such as Markov Decision Processes (MDP) or Semi-Markov Decision Processes (SMDP), do not capture the fact that, in an asynchronous environment, the state of the environment may change during computation performed by the agent. In an asynchronous environment, minimizing reaction time---the time it takes for an agent to react to an observation---also minimizes the time in which the state of the environment may change following observation. In many environments, the reaction time of an agent directly impacts task performance by permitting the environment to transition into either an undesirable terminal state or a state where performing the chosen action is inappropriate. We propose a class of reactive reinforcement learning algorithms that address this problem of asynchronous environments by immediately acting after observing new state information. We compare a reactive SARSA learning algorithm with the conventional SARSA learning algorithm on two asynchronous robotic tasks (emergency stopping and impact prevention), and show that the reactive RL algorithm reduces the reaction time of the agent by approximately the duration of the algorithm's learning update. This new class of reactive algorithms may facilitate safer control and faster decision making without any change to standard learning guarantees.Comment: 11 pages, 7 figures, currently under journal peer revie
    • …
    corecore