637 research outputs found

    Finger-NestNet: Interpretable Fingerphoto Verification on Smartphone using Deep Nested Residual Network

    Full text link
    Fingerphoto images captured using a smartphone are successfully used to verify the individuals that have enabled several applications. This work presents a novel algorithm for fingerphoto verification using a nested residual block: Finger-NestNet. The proposed Finger-NestNet architecture is designed with three consecutive convolution blocks followed by a series of nested residual blocks to achieve reliable fingerphoto verification. This paper also presents the interpretability of the proposed method using four different visualization techniques that can shed light on the critical regions in the fingerphoto biometrics that can contribute to the reliable verification performance of the proposed method. Extensive experiments are performed on the fingerphoto dataset comprised of 196 unique fingers collected from 52 unique data subjects using an iPhone6S. Experimental results indicate the improved verification of the proposed method compared to six different existing methods with EER = 1.15%.Comment: a preprint paper accepted in wacv2023 worksho

    An overview of touchless 2D fingerprint recognition

    Get PDF
    Touchless fingerprint recognition represents a rapidly growing field of research which has been studied for more than a decade. Through a touchless acquisition process, many issues of touch-based systems are circumvented, e.g., the presence of latent fingerprints or distortions caused by pressing fingers on a sensor surface. However, touchless fingerprint recognition systems reveal new challenges. In particular, a reliable detection and focusing of a presented finger as well as an appropriate preprocessing of the acquired finger image represent the most crucial tasks. Also, further issues, e.g., interoperability between touchless and touch-based fingerprints or presentation attack detection, are currently investigated by different research groups. Many works have been proposed so far to put touchless fingerprint recognition into practice. Published approaches range from self identification scenarios with commodity devices, e.g., smartphones, to high performance on-the-move deployments paving the way for new fingerprint recognition application scenarios.This work summarizes the state-of-the-art in the field of touchless 2D fingerprint recognition at each stage of the recognition process. Additionally, technical considerations and trade-offs of the presented methods are discussed along with open issues and challenges. An overview of available research resources completes the work

    Effective Identity Management on Mobile Devices Using Multi-Sensor Measurements

    Get PDF
    Due to the dramatic increase in popularity of mobile devices in the past decade, sensitive user information is stored and accessed on these devices every day. Securing sensitive data stored and accessed from mobile devices, makes user-identity management a problem of paramount importance. The tension between security and usability renders the task of user-identity verification on mobile devices challenging. Meanwhile, an appropriate identity management approach is missing since most existing technologies for user-identity verification are either one-shot user verification or only work in restricted controlled environments. To solve the aforementioned problems, we investigated and sought approaches from the sensor data generated by human-mobile interactions. The data are collected from the on-board sensors, including voice data from microphone, acceleration data from accelerometer, angular acceleration data from gyroscope, magnetic force data from magnetometer, and multi-touch gesture input data from touchscreen. We studied the feasibility of extracting biometric and behaviour features from the on-board sensor data and how to efficiently employ the features extracted to perform user-identity verification on the smartphone device. Based on the experimental results of the single-sensor modalities, we further investigated how to integrate them with hardware such as fingerprint and Trust Zone to practically fulfill a usable identity management system for both local application and remote services control. User studies and on-device testing sessions were held for privacy and usability evaluation.Computer Science, Department o

    A proposal to improve the authentication process in m-health environments

    Get PDF
    Special Section: Mission Critical Public-Safety Communications: Architectures, Enabling Technologies, and Future Applications One of the challenges of mobile health is to provide a way of maintaining privacy in the access to the data. Especially, when using ICT for providing access to health services and information. In these scenarios, it is essential to determine and verify the identity of users to ensure the security of the network. A way of authenticating the identity of each patient, doctor or any stakeholder involved in the process is to use a software application that analyzes the face of them through the cams integrated in their devices. The selection of an appropriate facial authentication software application requires a fair comparison between alternatives through a common database of face images. Users usually carry out authentication with variations in their aspects while accessing to health services. This paper presents both 1) a database of facial images that combines the most common variations that can happen in the participants and 2) an algorithm that establishes different levels of access to the data based on data sensitivity levels and the accuracy of the authentication

    Classification and Clustering of Shared Images on Social Networks and User Profile Linking

    Get PDF
    The ever increasing prevalence of smartphones and the popularity of social network platforms have facilitated instant sharing of multimedia content through social networks. However, the ease in taking and sharing photos and videos through social networks also allows privacy-intrusive and illegal content to be widely distributed. As such, images captured and shared by users on their profiles are considered as significant digital evidence for social network data analysis. The Sensor Pattern Noise (SPN) caused by camera sensor imperfections during the manufacturing process mainly consists of the Photo-Response Non-Uniformity (PRNU) noise that can be extracted from taken images without hacking the device. It has been proven to be an effective and robust device fingerprint that can be used for different important digital image forensic tasks, such as image forgery detection, source device identification and device linking. Particularly, by fingerprinting the camera sources captured a set of shared images on social networks, User Profile Linking (UPL) can be performed on social network platforms. The aim of this thesis is to present effective and robust methods and algorithms for better fulfilling shared image analysis based on SPN. We propose clustering and classification based methods to achieve Smartphone Identification (SI) and UPL tasks, given a set of images captured by a known number of smartphones and shared on a set of known user profiles. The important outcome of the proposed methods is UPL across different social networks where the clustered images from one social network are applied to fingerprint the related smartphones and link user profiles on the other social network. Also, we propose two methods for large-scale image clustering of different types of the shared images by users, without prior knowledge about the types and number of the smartphones

    eBiometrics: an enhanced multi-biometrics authentication technique for real-time remote applications on mobile devices

    Get PDF
    The use of mobile communication devices with advance sensors is growing rapidly. These sensors are enabling functions such as Image capture, Location applications, and Biometric authentication such as Fingerprint verification and Face & Handwritten signature recognition. Such ubiquitous devices are essential tools in today's global economic activities enabling anywhere-anytime financial and business transactions. Cryptographic functions and biometric-based authentication can enhance the security and confidentiality of mobile transactions. Using Biometric template security techniques in real-time biometric-based authentication are key factors for successful identity verification solutions, but are venerable to determined attacks by both fraudulent software and hardware. The EU-funded SecurePhone project has designed and implemented a multimodal biometric user authentication system on a prototype mobile communication device. However, various implementations of this project have resulted in long verification times or reduced accuracy and/or security. This paper proposes to use built-in-self-test techniques to ensure no tampering has taken place on the verification process prior to performing the actual biometric authentication. These techniques utilises the user personal identification number as a seed to generate a unique signature. This signature is then used to test the integrity of the verification process. Also, this study proposes the use of a combination of biometric modalities to provide application specific authentication in a secure environment, thus achieving optimum security level with effective processing time. I.e. to ensure that the necessary authentication steps and algorithms running on the mobile device application processor can not be undermined or modified by an imposter to get unauthorized access to the secure system
    • …
    corecore