69 research outputs found

    プレーナーガタオヨビフィンフェットガタエスラムニオケルチジョウホウシャセンキインシングルイベントアップセットニカンスルジッケンテキケンキュウ

    Full text link
    T. Kato et al., "Muon-Induced Single-Event Upsets in 20-nm SRAMs: Comparative Characterization With Neutrons and Alpha Particles," in IEEE Transactions on Nuclear Science, vol. 68, no. 7, pp. 1436-1444, July 2021, doi: 10.1109/TNS.2021.3082559

    SEU Characterization of Three Successive Generations of COTS SRAMs at Ultralow Bias Voltage to 14.2 MeV Neutrons

    Get PDF
    This paper presents a SEU sensitivity characterization at ultra-low bias voltage of three generations of COTS SRAMs manufactured in 130 nm, 90 nm and 65 nm CMOS processes. For this purpose, radiation tests with 14.2 MeV neutrons were performed for SRAM power supplies ranging from 0.5 V to 3.15 V. The experimental results yielded clear evidences of the SEU sensitivity increase at very low bias voltages. These results have been cross-checked with predictions issued from the modeling tool MUlti-SCAles Single Event Phenomena Predictive Platform (MUSCA-SEP3). Large-scale SELs and SEFIs, observed in the 90-nm and 130-nm SRAMs respectively, are also presented and discussed

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level

    Protecting Memories against Soft Errors: The Case for Customizable Error Correction Codes

    Get PDF
    As technology scales, radiation induced soft errors create more complex error patterns in memories with a single particle corrupting several bits. This poses a challenge to the Error Correction Codes (ECCs) traditionally used to protect memories that can correct only single bit errors. During the last decade, a number of codes have been developed to correct the emerging error patterns, focusing initially on double adjacent errors and later on three bit burst errors. However, as the memory cells get smaller and smaller, the error patterns created by radiation will continue to change and thus new codes will be needed. In addition, the memory layout and the technology used may also make some patterns more likely than others. For example, in some memories, there maybe elements that separate blocks of bits in a word, making errors that affect two blocks less likely. Finally, for a given memory, depending on the data stored, some error patterns may be more critical than others. For example, if numbers are stored in the memory, in most cases, errors on the more significant bits have a larger impact. Therefore, for a given memory and application, to achieve optimal protection, we would like to have a code that corrects a given set of patterns. This is not possible today as there is a limited number of code choices available in terms of correctable error patterns and word lengths. However, most of the codes used to protect memories are linear block codes that have a regular structure and which design can be automated. In this paper, we propose the automation of error correction code design for memory protection. To that end, we introduce a software tool that given a word length and the error patterns that need to be corrected, produces a linear block code described by its parity check matrix and also the bit placement. The benefits of this automated design approach are illustrated with several case studies. Finally, the tool is made available so that designers can easily produce custom error correction codes for their specific needs.Jiaqiang Li and Liyi Xiao would like to acknowledge the support of the Fundamental Research Funds for the Central Universities (Grant No. HIT.KISTP.201404), Harbin science and innovation research special fund (2015RAXXJ003), and Special found for development of Shenzhen strategic emerging industries (JCYJ20150625142543456). Pedro Reviriego would like to acknowledge the support of the TEXEO project TEC2016-80339-R funded by the Spanish Ministry of Economy and Competitivity and of the Madrid Community research project TAPIR-CM Grant No. P2018/TCS-4496

    Analysis of SoftError Rates for future technologies

    Get PDF
    La fiabilitat s'ha convertit en un aspecte important del disseny de sistemes informàtics a causa de la miniaturització de la tecnologia. En aquest projecte s'analitza la fiabilitat de les tecnologies actuals i futures simulant els components bàsics d'un processador

    Cache memory design in the FinFET era

    Get PDF
    The major problem in the future technology scaling is the variations in process parameters that are interpreted as imperfections in the development process. Moreover, devices are more sensitive to the environmental changes of temperature and supply volt- age as well as to ageing. All these influences are manifested in the integrated circuits as increased power consumption, reduced maximal operating frequency and increased number of failures. These effects have been partially overcome with the introduction of the FinFET technology which have solved the problem of variability caused by Random Dopant Fluctuations. However, in the next ten years channel length is projected to shrink to 10nm where the variability source generated by Line Edge Roughness will dominate, and its effects on the threshold voltage variations will become critical. The embedded memories with their cells as the basic building unit are the most prone to these effects due to their the smallest dimensions. Because of that, memories should be designed with particular care in order to make possible further technology scaling. This thesis explores upcoming 10nm FinFETs and the existing issues in the cache memory design with this technology. More- over, it tries to present some original and novel techniques on the different level of design abstraction for mitigating the effects of process and environmental variability. At first original method for simulating variability of Tri-Gate Fin- FETs is presented using conventional HSPICE simulation environment and BSIM-CMG model cards. When that is accomplished, thorough characterisation of traditional SRAM cell circuits (6T and 8T) is performed. Possibility of using Independent Gate FinFETs for increasing cell stability has been explored, also. Gain Cells appeared in the recent past as an attractive alternative for in the cache memory design. This thesis partially explores this idea by presenting and performing detailed circuit analysis of the dynamic 3T gain cell for 10nm FinFETs. At the top of this work, thesis shows one micro-architecture optimisation of high-speed cache when it is implemented by 3T gain cells. We show how the cache coherency states can be used in order to reduce refresh energy of the memory as well as reduce memory ageing.El principal problema de l'escalat la tecnologia són les variacions en els paràmetres de disseny (imperfeccions) durant procés de fabricació. D'altra banda, els dispositius també són més sensibles als canvis ambientals de temperatura, la tensió d'alimentació, així com l'envelliment. Totes aquestes influències es manifesten en els circuits integrats com l'augment de consum d'energia, la reducció de la freqüència d'operació màxima i l'augment del nombre de xips descartats. Aquests efectes s'han superat parcialment amb la introducció de la tecnologia FinFET que ha resolt el problema de la variabilitat causada per les fluctuacions de dopants aleatòries. No obstant això, en els propers deu anys, l'ample del canal es preveu que es reduirà a 10nm, on la font de la variabilitat generada per les rugositats de les línies de material dominarà, i els seu efecte en les variacions de voltatge llindar augmentarà. Les memòries encastades amb les seves cel·les com la unitat bàsica de construcció són les més propenses a sofrir aquests efectes a causa de les seves dimensions més petites. A causa d'això, cal dissenyar les memòries amb una especial cura per tal de fer possible l'escalat de la tecnologia. Aquesta tesi explora la tecnologia de FinFETs de 10nm i els problemes existents en el disseny de memòries amb aquesta tecnologia. A més a més, presentem noves tècniques originals sobre diferents nivells d'abstracció del disseny per a la mitigació dels efectes les variacions tan de procés com ambientals. En primer lloc, presentem un mètode original per a la simulació de la variabilitat de Tri-Gate FinFETs usant entorn de simulació HSPICE convencional i models de tecnologia BSIMCMG. Després, es realitza la caracterització completa dels circuits de cel·les SRAM tradicionals (6T i 8T) conjuntament amb l'ús de Gate-independent FinFETs per augmentar l'estabilitat de la cèl·lula
    corecore