44,405 research outputs found

    Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

    Full text link
    Bayesian optimization has become a successful tool for hyperparameter optimization of machine learning algorithms, such as support vector machines or deep neural networks. Despite its success, for large datasets, training and validating a single configuration often takes hours, days, or even weeks, which limits the achievable performance. To accelerate hyperparameter optimization, we propose a generative model for the validation error as a function of training set size, which is learned during the optimization process and allows exploration of preliminary configurations on small subsets, by extrapolating to the full dataset. We construct a Bayesian optimization procedure, dubbed Fabolas, which models loss and training time as a function of dataset size and automatically trades off high information gain about the global optimum against computational cost. Experiments optimizing support vector machines and deep neural networks show that Fabolas often finds high-quality solutions 10 to 100 times faster than other state-of-the-art Bayesian optimization methods or the recently proposed bandit strategy Hyperband

    Large-scale Nonlinear Variable Selection via Kernel Random Features

    Full text link
    We propose a new method for input variable selection in nonlinear regression. The method is embedded into a kernel regression machine that can model general nonlinear functions, not being a priori limited to additive models. This is the first kernel-based variable selection method applicable to large datasets. It sidesteps the typical poor scaling properties of kernel methods by mapping the inputs into a relatively low-dimensional space of random features. The algorithm discovers the variables relevant for the regression task together with learning the prediction model through learning the appropriate nonlinear random feature maps. We demonstrate the outstanding performance of our method on a set of large-scale synthetic and real datasets.Comment: Final version for proceedings of ECML/PKDD 201

    Finding kernel function for stock market prediction with support vector regression

    Get PDF
    Stock market prediction is one of the fascinating issues of stock market research. Accurate stock prediction becomes the biggest challenge in investment industry because the distribution of stock data is changing over the time. Time series forcasting, Neural Network (NN) and Support Vector Machine (SVM) are once commonly used for prediction on stock price. In this study, the data mining operation called time series forecasting is implemented. The large amount of stock data collected from Kuala Lumpur Stock Exchange is used for the experiment to test the validity of SVMs regression. SVM is a new machine learning technique with principle of structural minimization risk, which have greater generalization ability and proved success in time series prediction. Two kernel functions namely Radial Basis Function and polynomial are compared for finding the accurate prediction values. Besides that, backpropagation neural network are also used to compare the predictions performance. Several experiments are conducted and some analyses on the experimental results are done. The results show that SVM with polynomial kernels provide a promising alternative tool in KLSE stock market prediction

    Compiling vector pascal to the XeonPhi

    Get PDF
    Intel's XeonPhi is a highly parallel x86 architecture chip made by Intel. It has a number of novel features which make it a particularly challenging target for the compiler writer. This paper describes the techniques used to port the Glasgow Vector Pascal Compiler to this architecture and assess its performance by comparisons of the XeonPhi with 3 other machines running the same algorithms

    Residual Weighted Learning for Estimating Individualized Treatment Rules

    Full text link
    Personalized medicine has received increasing attention among statisticians, computer scientists, and clinical practitioners. A major component of personalized medicine is the estimation of individualized treatment rules (ITRs). Recently, Zhao et al. (2012) proposed outcome weighted learning (OWL) to construct ITRs that directly optimize the clinical outcome. Although OWL opens the door to introducing machine learning techniques to optimal treatment regimes, it still has some problems in performance. In this article, we propose a general framework, called Residual Weighted Learning (RWL), to improve finite sample performance. Unlike OWL which weights misclassification errors by clinical outcomes, RWL weights these errors by residuals of the outcome from a regression fit on clinical covariates excluding treatment assignment. We utilize the smoothed ramp loss function in RWL, and provide a difference of convex (d.c.) algorithm to solve the corresponding non-convex optimization problem. By estimating residuals with linear models or generalized linear models, RWL can effectively deal with different types of outcomes, such as continuous, binary and count outcomes. We also propose variable selection methods for linear and nonlinear rules, respectively, to further improve the performance. We show that the resulting estimator of the treatment rule is consistent. We further obtain a rate of convergence for the difference between the expected outcome using the estimated ITR and that of the optimal treatment rule. The performance of the proposed RWL methods is illustrated in simulation studies and in an analysis of cystic fibrosis clinical trial data.Comment: 48 pages, 3 figure
    corecore