21,829 research outputs found

    A linear systems analysis of the yaw dynamics of a dynamically scaled insect model

    Get PDF
    Recent studies suggest that fruit flies use subtle changes to their wing motion to actively generate forces during aerial maneuvers. In addition, it has been estimated that the passive rotational damping caused by the flapping wings of an insect is around two orders of magnitude greater than that for the body alone. At present, however, the relationships between the active regulation of wing kinematics, passive damping produced by the flapping wings and the overall trajectory of the animal are still poorly understood. In this study, we use a dynamically scaled robotic model equipped with a torque feedback mechanism to study the dynamics of yaw turns in the fruit fly Drosophila melanogaster. Four plausible mechanisms for the active generation of yaw torque are examined. The mechanisms deform the wing kinematics of hovering in order to introduce asymmetry that results in the active production of yaw torque by the flapping wings. The results demonstrate that the stroke-averaged yaw torque is well approximated by a model that is linear with respect to both the yaw velocity and the magnitude of the kinematic deformations. Dynamic measurements, in which the yaw torque produced by the flapping wings was used in real-time to determine the rotation of the robot, suggest that a first-order linear model with stroke-average coefficients accurately captures the yaw dynamics of the system. Finally, an analysis of the stroke-average dynamics suggests that both damping and inertia will be important factors during rapid body saccades of a fruit fly

    Intuitive Hand Teleoperation by Novice Operators Using a Continuous Teleoperation Subspace

    Full text link
    Human-in-the-loop manipulation is useful in when autonomous grasping is not able to deal sufficiently well with corner cases or cannot operate fast enough. Using the teleoperator's hand as an input device can provide an intuitive control method but requires mapping between pose spaces which may not be similar. We propose a low-dimensional and continuous teleoperation subspace which can be used as an intermediary for mapping between different hand pose spaces. We present an algorithm to project between pose space and teleoperation subspace. We use a non-anthropomorphic robot to experimentally prove that it is possible for teleoperation subspaces to effectively and intuitively enable teleoperation. In experiments, novice users completed pick and place tasks significantly faster using teleoperation subspace mapping than they did using state of the art teleoperation methods.Comment: ICRA 2018, 7 pages, 7 figures, 2 table

    Closed loop interactions between spiking neural network and robotic simulators based on MUSIC and ROS

    Get PDF
    In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning

    Deployable Payloads with Starbug

    Get PDF
    We explore the range of wide field multi-object instrument concepts taking advantage of the unique capabilities of the Starbug focal plane positioning concept. Advances to familiar instrument concepts, such as fiber positioners and deployable fiber-fed IFUs, are discussed along with image relays and deployable active sensors. We conceive deployable payloads as components of systems more traditionally regarded as part of telescope systems rather than instruments - such as adaptive optics and ADCs. Also presented are some of the opportunities offered by the truly unique capabilities of Starbug, such as microtracking to apply intra-field distortion correction during the course of an observation.Comment: 12 pages, 8 figures, to be published in Proc. SPIE 6273 "Opto-Mechanical Technologies for Astronomy

    Universal Robotic Gripper based on the Jamming of Granular Material

    Full text link
    Gripping and holding of objects are key tasks for robotic manipulators. The development of universal grippers able to pick up unfamiliar objects of widely varying shape and surface properties remains, however, challenging. Most current designs are based on the multi-fingered hand, but this approach introduces hardware and software complexities. These include large numbers of controllable joints, the need for force sensing if objects are to be handled securely without crushing them, and the computational overhead to decide how much stress each finger should apply and where. Here we demonstrate a completely different approach to a universal gripper. Individual fingers are replaced by a single mass of granular material that, when pressed onto a target object, flows around it and conforms to its shape. Upon application of a vacuum the granular material contracts and hardens quickly to pinch and hold the object without requiring sensory feedback. We find that volume changes of less than 0.5% suffice to grip objects reliably and hold them with forces exceeding many times their weight. We show that the operating principle is the ability of granular materials to transition between an unjammed, deformable state and a jammed state with solid-like rigidity. We delineate three separate mechanisms, friction, suction and interlocking, that contribute to the gripping force. Using a simple model we relate each of them to the mechanical strength of the jammed state. This opens up new possibilities for the design of simple, yet highly adaptive systems that excel at fast gripping of complex objects.Comment: 10 pages, 7 figure

    Collision Detection and Reaction: A Contribution to Safe Physical Human-Robot Interaction

    Get PDF
    In the framework of physical Human-Robot Interaction (pHRI), methodologies and experimental tests are presented for the problem of detecting and reacting to collisions between a robot manipulator and a human being. Using a lightweight robot that was especially designed for interactive and cooperative tasks, we show how reactive control strategies can significantly contribute to ensuring safety to the human during physical interaction. Several collision tests were carried out, illustrating the feasibility and effectiveness of the proposed approach. While a subjective “safety” feeling is experienced by users when being able to naturally stop the robot in autonomous motion, a quantitative analysis of different reaction strategies was lacking. In order to compare these strategies on an objective basis, a mechanical verification platform has been built. The proposed collision detection and reactions methods prove to work very reliably and are effective in reducing contact forces far below any level which is dangerous to humans. Evaluations of impacts between robot and human arm or chest up to a maximum robot velocity of 2.7 m/s are presented
    corecore