135,679 research outputs found

    Universal features of fluctuations

    Get PDF
    Universal scaling laws of fluctuations (the Δ\Delta-scaling laws) can be derived for equilibrium and off-equilibrium systems when combined with the finite-size scaling analysis. In any system in which the second-order critical behavior can be identified, the relation between order parameter, criticality and scaling law of fluctuations has been established and the relation between the scaling function and the critical exponents has been found.Comment: 10 pages; TORINO 2000, New Frontiers in Soft Physics and Correlations on the Threshold of the Third Milleniu

    Predictive Scaling Laws for Spherical Rotating Dynamos

    Full text link
    State of the art numerical models of the Geodynamo are still performed in a parameter regime extremely remote from the values relevant to the physics of the Earth's core. In order to establish a connection between dynamo modeling and the geophysical motivation, {it is necessary to use} scaling laws. Such scaling laws establish the dependence of essential quantities (such as the magnetic field strength) on measured or controlled quantities. They allow for a direct confrontation of advanced models with geophysical {constraints}. (...) We show that previous empirical scaling laws for the magnetic field strength essentially reflect the statistical balance between energy production and dissipation for saturated dynamos. Such power based scaling laws are thus necessarily valid for any dynamo in statistical equilibrium and applicable to any numerical model, irrespectively of the dynamo mechanism. We show that direct numerical fits can provide contradictory results owing to biases in the parameters space covered in the numerics and to the role of a priori hypothesis on the fraction of ohmic dissipation. We introduce predictive scaling laws, i.e. relations involving input parameters of the governing equations only. We guide our reasoning on physical considerations. We show that our predictive scaling laws can properly describe the numerical database and reflect the dominant forces balance at work in these numerical simulations. We highlight the dependence of the magnetic field strength on the rotation rate. Finally, our results stress that available numerical models operate in a viscous dynamical regime, which is not relevant to the Earth's core

    Quantum electrodynamics with anisotropic scaling: Heisenberg-Euler action and Schwinger pair production in the bilayer graphene

    Get PDF
    We discuss quantum electrodynamics emerging in the vacua with anisotropic scaling. Systems with anisotropic scaling were suggested by Horava in relation to the quantum theory of gravity. In such vacua the space and time are not equivalent, and moreover they obey different scaling laws, called the anisotropic scaling. Such anisotropic scaling takes place for fermions in bilayer graphene, where if one neglects the trigonal warping effects the massless Dirac fermions have quadratic dispersion. This results in the anisotropic quantum electrodynamics, in which electric and magnetic fields obey different scaling laws. Here we discuss the Heisenberg-Euler action and Schwinger pair production in such anisotropic QEDComment: 5 pages, no figures, JETP Letters style, version accepted in JETP Letter

    Constructing cities, deconstructing scaling laws

    Get PDF
    Cities can be characterised and modelled through different urban measures. Consistency within these observables is crucial in order to advance towards a science of cities. Bettencourt et al have proposed that many of these urban measures can be predicted through universal scaling laws. We develop a framework to consistently define cities, using commuting to work and population density thresholds, and construct thousands of realisations of systems of cities with different boundaries for England and Wales. These serve as a laboratory for the scaling analysis of a large set of urban indicators. The analysis shows that population size alone does not provide enough information to describe or predict the state of a city as previously proposed, indicating that the expected scaling laws are not corroborated. We found that most urban indicators scale linearly with city size regardless of the definition of the urban boundaries. However, when non-linear correlations are present, the exponent fluctuates considerably.Comment: Accepted for publication, Journal of the Royal Society Interfac

    On inertial-range scaling laws

    Full text link
    Inertial-range scaling laws for two- and three-dimensional turbulence are re-examined within a unified framework. A new correction to Kolmogorov's k−5/3k^{-5/3} scaling is derived for the energy inertial range. A related modification is found to Kraichnan's logarithmically corrected two-dimensional enstrophy-range law that removes its unexpected divergence at the injection wavenumber. The significance of these corrections is illustrated with steady-state energy spectra from recent high-resolution closure computations. Implications for conventional numerical simulations are discussed. These results underscore the asymptotic nature of inertial-range scaling laws.Comment: 16 pages, postscript (uncompressed, not encoded
    • …
    corecore