2,759 research outputs found

    Capacity and delay scaling for broadcast transmission in highly mobile wireless networks

    Get PDF
    We study broadcast capacity and minimum delay scaling laws for highly mobile wireless networks, in which each node has to disseminate or broadcast packets to all other nodes in the network. In particular, we consider a cell partitioned network under the simplifed independent and identically distributed (IID) mobility model, in which each node chooses a new cell at random every time slot. We derive scaling laws for broadcast capacity and minimum delay as a function of the cell size. We propose a simple first-come-firstserve (FCFS) flooding scheme that nearly achieves both capacity and minimum delay scaling. Our results show that high mobility does not improve broadcast capacity, and that both capacity and delay improve with increasing cell sizes. In contrast to what has been speculated in the literature we show that there is (nearly) no tradeoff between capacity and delay. Our analysis makes use of the theory of Markov Evolving Graphs (MEGs) and develops two new bounds on ooding time in MEGs by relaxing the previously required expander property assumption. Keywords: Mobile ad hoc networks, Wireless networks, Broadcast, Throughputdelay tradeoff, Scaling laws, Flooding time, Markov evolving graphNational Science Foundation (U.S.) (Grant CNS-1217048)National Science Foundation (U.S.) (Grant CNS-1713725)National Science Foundation (U.S.) (Grant AST-1547331

    Restricted Mobility Improves Delay-Throughput Trade-offs in Mobile Ad-Hoc Networks

    Get PDF
    In this paper we revisit two classes of mobility models which are widely used to repre-sent users ’ mobility in wireless networks: Random Waypoint (RWP) and Random Direction (RD). For both models we obtain systems of partial differential equations which describe the evolution of the users ’ distribution. For the RD model, we show how the equations can be solved analytically both in the stationary and transient regime adopting standard mathematical techniques. Our main contributions are i) simple expressions which relate the transient dura-tion to the model parameters; ii) the definition of a generalized random direction model whose stationary distribution of mobiles in the physical space corresponds to an assigned distribution

    Impact of Correlated Mobility on Delay-Throughput Performance in Mobile Ad-Hoc Networks

    Get PDF
    Abstract—We extend the analysis of the scaling laws of wireless ad hoc networks to the case of correlated nodes movements, which are commonly found in real mobility processes. We consider a simple version of the Reference Point Group Mobility model, in which nodes belonging to the same group are constrained to lie in a disc area, whose center moves uniformly across the network according to the i.i.d. model. We assume fast mobility conditions, and take as primary goal the maximization of pernode throughput. We discover that correlated node movements have huge impact on asymptotic throughput and delay, and can sometimes lead to better performance than the one achievable under independent nodes movements. I. INTRODUCTION AND RELATED WORK In the last few years the store-carry-forward communication paradigm, which allows nodes to physically carry buffered dat

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Throughput and Delay Scaling in Supportive Two-Tier Networks

    Full text link
    Consider a wireless network that has two tiers with different priorities: a primary tier vs. a secondary tier, which is an emerging network scenario with the advancement of cognitive radio technologies. The primary tier consists of randomly distributed legacy nodes of density nn, which have an absolute priority to access the spectrum. The secondary tier consists of randomly distributed cognitive nodes of density m=nÎČm=n^\beta with ÎČ≄2\beta\geq 2, which can only access the spectrum opportunistically to limit the interference to the primary tier. Based on the assumption that the secondary tier is allowed to route the packets for the primary tier, we investigate the throughput and delay scaling laws of the two tiers in the following two scenarios: i) the primary and secondary nodes are all static; ii) the primary nodes are static while the secondary nodes are mobile. With the proposed protocols for the two tiers, we show that the primary tier can achieve a per-node throughput scaling of λp(n)=Θ(1/log⁥n)\lambda_p(n)=\Theta(1/\log n) in the above two scenarios. In the associated delay analysis for the first scenario, we show that the primary tier can achieve a delay scaling of Dp(n)=Θ(nÎČlog⁥nλp(n))D_p(n)=\Theta(\sqrt{n^\beta\log n}\lambda_p(n)) with λp(n)=O(1/log⁥n)\lambda_p(n)=O(1/\log n). In the second scenario, with two mobility models considered for the secondary nodes: an i.i.d. mobility model and a random walk model, we show that the primary tier can achieve delay scaling laws of Θ(1)\Theta(1) and Θ(1/S)\Theta(1/S), respectively, where SS is the random walk step size. The throughput and delay scaling laws for the secondary tier are also established, which are the same as those for a stand-alone network.Comment: 13 pages, double-column, 6 figures, accepted for publication in JSAC 201
    • 

    corecore