4,021 research outputs found

    Unsupervised Generative Modeling Using Matrix Product States

    Full text link
    Generative modeling, which learns joint probability distribution from data and generates samples according to it, is an important task in machine learning and artificial intelligence. Inspired by probabilistic interpretation of quantum physics, we propose a generative model using matrix product states, which is a tensor network originally proposed for describing (particularly one-dimensional) entangled quantum states. Our model enjoys efficient learning analogous to the density matrix renormalization group method, which allows dynamically adjusting dimensions of the tensors and offers an efficient direct sampling approach for generative tasks. We apply our method to generative modeling of several standard datasets including the Bars and Stripes, random binary patterns and the MNIST handwritten digits to illustrate the abilities, features and drawbacks of our model over popular generative models such as Hopfield model, Boltzmann machines and generative adversarial networks. Our work sheds light on many interesting directions of future exploration on the development of quantum-inspired algorithms for unsupervised machine learning, which are promisingly possible to be realized on quantum devices.Comment: 11 pages, 12 figures (not including the TNs) GitHub Page: https://congzlwag.github.io/UnsupGenModbyMPS

    Experimental observations of dynamic critical phenomena in a lipid membrane

    Full text link
    Near a critical point, the time scale of thermally-induced fluctuations diverges in a manner determined by the dynamic universality class. Experiments have verified predicted 3D dynamic critical exponents in many systems, but similar experiments in 2D have been lacking for the case of conserved order parameter. Here we analyze time-dependent correlation functions of a quasi-2D lipid bilayer in water to show that its critical dynamics agree with a recently predicted universality class. In particular, the effective dynamic exponent zeffz_{\text{eff}} crosses over from ∼2\sim 2 to ∼3\sim 3 as the correlation length of fluctuations exceeds a hydrodynamic length set by the membrane and bulk viscosities.Comment: 5 pages, 3 figures and 2 additional pages of supplemen

    Bursts of activity in collective cell migration

    Get PDF
    Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems
    • …
    corecore