8,951 research outputs found

    Network geography: relations, interactions, scaling and spatial processes in GIS

    Get PDF
    This chapter argues that the representational basis of GIS largely avoidseven the most rudimentary distortions of Euclidean space as reflected, forexample, in the notion of the network. Processes acting on networks whichinvolve both short and longer term dynamics are often absent from GIscience. However a sea change is taking place in the way we view thegeography of natural and man-made systems. This is emphasising theirdynamics and the way they evolve from the bottom up, with networks anessential constituent of this decentralized paradigm. Here we will sketchthese developments, showing how ideas about graphs in terms of the waythey evolve as connected, self-organised structures reflected in theirscaling, are generating new and important views of geographical space.We argue that GI science must respond to such developments and needs tofind new forms of representation which enable both theory andapplications through software to be extended to embrace this new scienceof networks

    Bi-manual haptic interaction in virtual worlds

    No full text
    In the Virtual Reality field, force-feedback interfaces called haptic interfaces can simulate tactile and kinesthetic interactions. Bi-manual haptic interactions can better immerse users in virtual worlds than one hand interactions and more tasks can be realized such as parallel or precision tasks. Only a few studies deals specifically with bi-manual haptic interactions and previous work mainly extends uni-manual techniques directly to two hands. The document reports possible lacks of bi-manual-specific management of real and virtual workspace and the lack of genericity of solutions using haptic interfaces. The study on bi-manual haptic interactions led to the realization of a framework allowing to use simultaneously several haptic devices. This framework simulates a 3D virtual world coupled with a physical simulation. We realized new specifically bi-manual haptic interaction techniques allowing to control camera, to extend the virtual workspace by a hybrid position/rate control and to help bi-manual pick and place task. The document point out issues such as collision between haptic devices and unification of two different haptic interfaces

    Typology of Web 2.0 spheres: Understanding the cultural dimensions of social media spaces

    Get PDF
    It has taken the past decade to commonly acknowledge that online space is tethered to real place. From euphoric conceptualizations of social media spaces as a novel, unprecedented and revolutionary entity, the dust has settled, allowing for talk of boundaries and ties to real-world settings. Metaphors have been instrumental in this pursuit, shaping perceptions and affecting actions within this extended structural realm. Specifically, they have been harnessed to architect Web 2.0 spaces, be it chatrooms, electronic frontiers, homepages, or information highways for policy and practice. While metaphors are pervasive in addressing and

    Spherical tangible user interfaces in mixed reality

    Get PDF
    The popularity of virtual reality (VR) and augmented reality (AR) has grown rapidly in recent years, both in academia and commercial applications. This is rooted in technological advances and affordable head-mounted displays (HMDs). Whether in games or professional applications, HMDs allow for immersive audio-visual experiences that transport users to compelling digital worlds or convincingly augment the real world. However, as true to life as these experiences have become in a visual and auditory sense, the question remains how we can model interaction with these virtual environments in an equally natural way. Solutions providing intuitive tangible interaction would bear the potential to fundamentally make the mixed reality (MR) spectrum more accessible, especially for novice users. Research on tangible user interfaces (TUIs) has pursued this goal by coupling virtual to real-world objects. Tangible interaction has been shown to provide significant advantages for numerous use cases. Spherical tangible user interfaces (STUIs) present a special case of these devices, mainly due to their ability to fully embody any spherical virtual content. In general, spherical devices increasingly transition from mere technology demonstrators to usable multi-modal interfaces. For this dissertation, we explore the application of STUIs in MR environments primarily by comparing them to state-of-the-art input techniques in four different contexts. Thus, investigating the questions of embodiment, overall user performance, and the ability of STUIs relying on their shape alone to support complex interaction techniques. First, we examine how spherical devices can embody immersive visualizations. In an initial study, we test the practicality of a tracked sphere embodying three kinds of visualizations. We examine simulated multi-touch interaction on a spherical surface and compare two different sphere sizes to VR controllers. Results confirmed our prototype's viability and indicate improved pattern recognition and advantages for the smaller sphere. Second, to further substantiate VR as a prototyping technology, we demonstrate how a large tangible spherical display can be simulated in VR. We show how VR can fundamentally extend the capabilities of real spherical displays by adding physical rotation to a simulated multi-touch surface. After a first study evaluating the general viability of simulating such a display in VR, our second study revealed the superiority of a rotating spherical display. Third, we present a concept for a spherical input device for tangible AR (TAR). We show how such a device can provide basic object manipulation capabilities utilizing two different modes and compare it to controller techniques with increasing hardware complexity. Our results show that our button-less sphere-based technique is only outperformed by a mode-less controller variant that uses physical buttons and a touchpad. Fourth, to study the intrinsic problem of VR locomotion, we explore two opposing approaches: a continuous and a discrete technique. For the first, we demonstrate a spherical locomotion device supporting two different locomotion paradigms that propel a user's first-person avatar accordingly. We found that a position control paradigm applied to a sphere performed mostly superior in comparison to button-supported controller interaction. For discrete locomotion, we evaluate the concept of a spherical world in miniature (SWIM) used for avatar teleportation in a large virtual environment. Results showed that users subjectively preferred the sphere-based technique over regular controllers and on average, achieved lower task times and higher accuracy. To conclude the thesis, we discuss our findings, insights, and subsequent contribution to our central research questions to derive recommendations for designing techniques based on spherical input devices and an outlook on the future development of spherical devices in the mixed reality spectrum.Die Popularität von Virtual Reality (VR) und Augmented Reality (AR) hat in den letzten Jahren rasant zugenommen, sowohl im akademischen Bereich als auch bei kommerziellen Anwendungen. Dies ist in erster Linie auf technologische Fortschritte und erschwingliche Head-Mounted Displays (HMDs) zurückzuführen. Ob in Spielen oder professionellen Anwendungen, HMDs ermöglichen immersive audiovisuelle Erfahrungen, die uns in fesselnde digitale Welten versetzen oder die reale Welt überzeugend erweitern. Doch so lebensecht diese Erfahrungen in visueller und auditiver Hinsicht geworden sind, so bleibt doch die Frage, wie die Interaktion mit diesen virtuellen Umgebungen auf ebenso natürliche Weise gestaltet werden kann. Lösungen, die eine intuitive, greifbare Interaktion ermöglichen, hätten das Potenzial, das Spektrum der Mixed Reality (MR) fundamental zugänglicher zu machen, insbesondere für Unerfahrene. Die Forschung an Tangible User Interfaces (TUIs) hat dieses Ziel durch das Koppeln virtueller und realer Objekte verfolgt und so hat sich gezeigt, dass greifbare Interaktion für zahlreiche Anwendungsfälle signifikante Vorteile bietet. Spherical Tangible User Interfaces (STUIs) stellen einen Spezialfall von greifbaren Interfaces dar, insbesondere aufgrund ihrer Fähigkeit, beliebige sphärische virtuelle Inhalte vollständig verkörpern zu können. Generell entwickeln sich sphärische Geräte zunehmend von reinen Technologiedemonstratoren zu nutzbaren multimodalen Instrumenten, die auf eine breite Palette von Interaktionstechniken zurückgreifen können. Diese Dissertation untersucht primär die Anwendung von STUIs in MR-Umgebungen durch einen Vergleich mit State-of-the-Art-Eingabetechniken in vier verschiedenen Kontexten. Dies ermöglicht die Erforschung der Bedeutung der Verkörperung virtueller Objekte, der Benutzerleistung im Allgemeinen und der Fähigkeit von STUIs, die sich lediglich auf ihre Form verlassen, komplexe Interaktionstechniken zu unterstützen. Zunächst erforschen wir, wie sphärische Geräte immersive Visualisierungen verkörpern können. Eine erste Studie ergründet die Praxistauglichkeit einer einfach konstruierten, getrackten Kugel, die drei Arten von Visualisierungen verkörpert. Wir testen simulierte Multi-Touch-Interaktion auf einer sphärischen Oberfläche und vergleichen zwei Kugelgrößen mit VR-Controllern. Die Ergebnisse bestätigten die Praxistauglichkeit des Prototyps und deuten auf verbesserte Mustererkennung sowie Vorteile für die kleinere Kugel hin. Zweitens, um die Validität von VR als Prototyping-Technologie zu bekräftigen, demonstrieren wir, wie ein großes, anfassbares sphärisches Display in VR simuliert werden kann. Es zeigt sich, wie VR die Möglichkeiten realer sphärischer Displays substantiell erweitern kann, indem eine simulierte Multi-Touch-Oberfläche um die Fähigkeit der physischen Rotation ergänzt wird. Nach einer ersten Studie, die die generelle Machbarkeit der Simulation eines solchen Displays in VR evaluiert, zeigte eine zweite Studie die Überlegenheit des drehbaren sphärischen Displays. Drittens präsentiert diese Arbeit ein Konzept für ein sphärisches Eingabegerät für Tangible AR (TAR). Wir zeigen, wie ein solches Werkzeug grundlegende Fähigkeiten zur Objektmanipulation unter Verwendung von zwei verschiedenen Modi bereitstellen kann und vergleichen es mit Eingabetechniken deren Hardwarekomplexität zunehmend steigt. Unsere Ergebnisse zeigen, dass die kugelbasierte Technik, die ohne Knöpfe auskommt, nur von einer Controller-Variante übertroffen wird, die physische Knöpfe und ein Touchpad verwendet und somit nicht auf unterschiedliche Modi angewiesen ist. Viertens, um das intrinsische Problem der Fortbewegung in VR zu erforschen, untersuchen wir zwei gegensätzliche Ansätze: eine kontinuierliche und eine diskrete Technik. Für die erste präsentieren wir ein sphärisches Eingabegerät zur Fortbewegung, das zwei verschiedene Paradigmen unterstützt, die einen First-Person-Avatar entsprechend bewegen. Es zeigte sich, dass das Paradigma der direkten Positionssteuerung, angewandt auf einen Kugel-Controller, im Vergleich zu regulärer Controller-Interaktion, die zusätzlich auf physische Knöpfe zurückgreifen kann, meist besser abschneidet. Im Bereich der diskreten Fortbewegung evaluieren wir das Konzept einer kugelförmingen Miniaturwelt (Spherical World in Miniature, SWIM), die für die Avatar-Teleportation in einer großen virtuellen Umgebung verwendet werden kann. Die Ergebnisse zeigten eine subjektive Bevorzugung der kugelbasierten Technik im Vergleich zu regulären Controllern und im Durchschnitt eine schnellere Lösung der Aufgaben sowie eine höhere Genauigkeit. Zum Abschluss der Arbeit diskutieren wir unsere Ergebnisse, Erkenntnisse und die daraus resultierenden Beiträge zu unseren zentralen Forschungsfragen, um daraus Empfehlungen für die Gestaltung von Techniken auf Basis kugelförmiger Eingabegeräte und einen Ausblick auf die mögliche zukünftige Entwicklung sphärischer Eingabegräte im Mixed-Reality-Bereich abzuleiten

    Embodiment and embodied design

    Get PDF
    Picture this. A preverbal infant straddles the center of a seesaw. She gently tilts her weight back and forth from one side to the other, sensing as each side tips downward and then back up again. This child cannot articulate her observations in simple words, let alone in scientific jargon. Can she learn anything from this experience? If so, what is she learning, and what role might such learning play in her future interactions in the world? Of course, this is a nonverbal bodily experience, and any learning that occurs must be bodily, physical learning. But does this nonverbal bodily experience have anything to do with the sort of learning that takes place in schools - learning verbal and abstract concepts? In this chapter, we argue that the body has everything to do with learning, even learning of abstract concepts. Take mathematics, for example. Mathematical practice is thought to be about producing and manipulating arbitrary symbolic inscriptions that bear abstract, universal truisms untainted by human corporeality. Mathematics is thought to epitomize our species’ collective historical achievement of transcending and, perhaps, escaping the mundane, material condition of having a body governed by haphazard terrestrial circumstance. Surely mathematics is disembodied

    NaviFields: relevance fields for adaptive VR navigation

    Get PDF
    Virtual Reality allow users to explore virtual environments naturally, by moving their head and body. However, the size of the environments they can explore is limited by real world constraints, such as the tracking technology or the physical space available. Existing techniques removing these limitations often break the metaphor of natural navigation in VR (e.g. steering techniques), involve control commands (e.g., teleporting) or hinder precise navigation (e.g., scaling user's displacements). This paper proposes NaviFields, which quantify the requirements for precise navigation of each point of the environment, allowing natural navigation within relevant areas, while scaling users' displacements when travelling across non-relevant spaces. This expands the size of the navigable space, retains the natural navigation metaphor and still allows for areas with precise control of the virtual head. We present a formal description of our NaviFields technique, which we compared against two alternative solutions (i.e., homogeneous scaling and natural navigation). Our results demonstrate our ability to cover larger spaces, introduce minimal disruption when travelling across bigger distances and improve very significantly the precise control of the viewpoint inside relevant areas

    Cyberspace As/And Space

    Get PDF
    The appropriate role of place- and space-based metaphors for the Internet and its constituent nodes and networks is hotly contested. This essay seeks to provoke critical reflection on the implications of place- and space-based theories of cyberspace for the ongoing production of networked space more generally. It argues, first, that adherents of the cyberspace metaphor have been insufficiently sensitive to the ways in which theories of cyberspace as space themselves function as acts of social construction. Specifically, the leading theories all have deployed the metaphoric construct of cyberspace to situate cyberspace, explicitly or implicitly, as separate space. This denies all of the ways in which cyberspace operates as both extension and evolution of everyday spatial practice. Next, it argues that critics of the cyberspace metaphor have confused two senses of space and two senses of metaphor. The cyberspace metaphor does not refer to abstract, Cartesian space, but instead expresses an experienced spatiality mediated by embodied human cognition. Cyberspace in this sense is relative, mutable, and constituted via the interactions among practice, conceptualization, and representation. The insights drawn from this exercise suggest a very different way of understanding both the spatiality of cyberspace and its architectural and regulatory challenges. In particular, they suggest closer attention to three ongoing shifts: the emergence of a new sense of social space, which the author calls networked space; the interpenetration of embodied, formerly bounded space by networked space; and the ways in which these developments alter, instantiate, and disrupt geographies of power

    Computational interaction techniques for 3D selection, manipulation and navigation in immersive VR

    Get PDF
    3D interaction provides a natural interplay for HCI. Many techniques involving diverse sets of hardware and software components have been proposed, which has generated an explosion of Interaction Techniques (ITes), Interactive Tasks (ITas) and input devices, increasing thus the heterogeneity of tools in 3D User Interfaces (3DUIs). Moreover, most of those techniques are based on general formulations that fail in fully exploiting human capabilities for interaction. This is because while 3D interaction enables naturalness, it also produces complexity and limitations when using 3DUIs. In this thesis, we aim to generate approaches that better exploit the high potential human capabilities for interaction by combining human factors, mathematical formalizations and computational methods. Our approach is focussed on the exploration of the close coupling between specific ITes and ITas while addressing common issues of 3D interactions. We specifically focused on the stages of interaction within Basic Interaction Tasks (BITas) i.e., data input, manipulation, navigation and selection. Common limitations of these tasks are: (1) the complexity of mapping generation for input devices, (2) fatigue in mid-air object manipulation, (3) space constraints in VR navigation; and (4) low accuracy in 3D mid-air selection. Along with two chapters of introduction and background, this thesis presents five main works. Chapter 3 focusses on the design of mid-air gesture mappings based on human tacit knowledge. Chapter 4 presents a solution to address user fatigue in mid-air object manipulation. Chapter 5 is focused on addressing space limitations in VR navigation. Chapter 6 describes an analysis and a correction method to address Drift effects involved in scale-adaptive VR navigation; and Chapter 7 presents a hybrid technique 3D/2D that allows for precise selection of virtual objects in highly dense environments (e.g., point clouds). Finally, we conclude discussing how the contributions obtained from this exploration, provide techniques and guidelines to design more natural 3DUIs
    • …
    corecore