1,997 research outputs found

    Knowledge-based approaches to producing large-scale training data from scratch for Word Sense Disambiguation and Sense Distribution Learning

    Get PDF
    Communicating and understanding each other is one of the most important human abilities. As humans, in fact, we can easily assign the correct meaning to the ambiguous words in a text, while, at the same time, being able to abstract, summarise and enrich its content with new information that we learned somewhere else. On the contrary, machines rely on formal languages which do not leave space to ambiguity hence being easy to parse and understand. Therefore, to fill the gap between humans and machines and enabling the latter to better communicate with and comprehend its sentient counterpart, in the modern era of computer-science's much effort has been put into developing Natural Language Processing (NLP) approaches which aim at understanding and handling the ambiguity of the human language. At the core of NLP lies the task of correctly interpreting the meaning of each word in a given text, hence disambiguating its content exactly as a human would do. Researchers in the Word Sense Disambiguation (WSD) field address exactly this issue by leveraging either knowledge bases, i.e. graphs where nodes are concept and edges are semantic relations among them, or manually-annotated datasets for training machine learning algorithms. One common obstacle is the knowledge acquisition bottleneck problem, id est, retrieving or generating semantically-annotated data which are necessary to build both semantic graphs or training sets is a complex task. This phenomenon is even more serious when considering languages other than English where resources to generate human-annotated data are scarce and ready-made datasets are completely absent. With the advent of deep learning this issue became even more serious as more complex models need larger datasets in order to learn meaningful patterns to solve the task. Another critical issue in WSD, as well as in other machine-learning-related fields, is the domain adaptation problem, id est, performing the same task in different application domains. This is particularly hard when dealing with word senses, as, in fact, they are governed by a Zipfian distribution; hence, by slightly changing the application domain, a sense might become very frequent even though it is very rare in the general domain. For example the geometric sense of plane is very frequent in a corpus made of math books, while it is very rare in a general domain dataset. In this thesis we address both these problems. Inter alia, we focus on relieving the burden of human annotations in Word Sense Disambiguation thus enabling the automatic construction of high-quality sense-annotated dataset not only for English, but especially for other languages where sense-annotated data are not available at all. Furthermore, recognising in word-sense distribution one of the main pitfalls for WSD approaches, we also alleviate the dependency on most frequent sense information by automatically inducing the word-sense distribution in a given text of raw sentences. In the following we propose a language-independent and automatic approach to generating semantic annotations given a collection of sentences, and then introduce two methods for the automatic inference of word-sense distributions. Finally, we combine the two kind of approaches to build a semantically-annotated dataset that reflect the sense distribution which we automatically infer from the target text

    Natural language understanding: instructions for (Present and Future) use

    Get PDF
    In this paper I look at Natural Language Understanding, an area of Natural Language Processing aimed at making sense of text, through the lens of a visionary future: what do we expect a machine should be able to understand? and what are the key dimensions that require the attention of researchers to make this dream come true

    Towards Effective Disambiguation for Machine Translation with Large Language Models

    Get PDF
    Resolving semantic ambiguity has long been recognised as a central challenge in the field of Machine Translation. Recent work on benchmarking translation performance on ambiguous sentences has exposed the limitations of conventional Neural Machine Translation (NMT) systems, which fail to handle many such cases. Large language models (LLMs) have emerged as a promising alternative, demonstrating comparable performance to traditional NMT models while introducing new paradigms for controlling the target outputs. In this paper, we study the capabilities of LLMs to translate ``ambiguous sentences'' - i.e. those containing highly polysemous words and/or rare word senses. We also propose two ways to improve their disambiguation capabilities, through a) in-context learning and b) fine-tuning on carefully curated ambiguous datasets. Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions. Our research provides valuable insights into effectively adapting LLMs to become better disambiguators during Machine Translation. We release our curated disambiguation corpora and resources at https://data.statmt.org/ambiguous-europarl

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version
    • …
    corecore