2 research outputs found

    C-Coll: Introducing Error-bounded Lossy Compression into MPI Collectives

    Full text link
    With the ever-increasing computing power of supercomputers and the growing scale of scientific applications, the efficiency of MPI collective communications turns out to be a critical bottleneck in large-scale distributed and parallel processing. Large message size in MPI collectives is a particularly big concern because it may significantly delay the overall parallel performance. To address this issue, prior research simply applies the off-the-shelf fix-rate lossy compressors in the MPI collectives, leading to suboptimal performance, limited generalizability, and unbounded errors. In this paper, we propose a novel solution, called C-Coll, which leverages error-bounded lossy compression to significantly reduce the message size, resulting in a substantial reduction in communication cost. The key contributions are three-fold. (1) We develop two general, optimized lossy-compression-based frameworks for both types of MPI collectives (collective data movement as well as collective computation), based on their particular characteristics. Our framework not only reduces communication cost but also preserves data accuracy. (2) We customize an optimized version based on SZx, an ultra-fast error-bounded lossy compressor, which can meet the specific needs of collective communication. (3) We integrate C-Coll into multiple collectives, such as MPI_Allreduce, MPI_Scatter, and MPI_Bcast, and perform a comprehensive evaluation based on real-world scientific datasets. Experiments show that our solution outperforms the original MPI collectives as well as multiple baselines and related efforts by 3.5-9.7X.Comment: 12 pages, 15 figures, 5 tables, submitted to SC '2

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table
    corecore