2,021 research outputs found

    Robot introspection through learned hidden Markov models

    Get PDF
    In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by a robot in the execution of a task, we use unsupervised learning techniques to estimate a hidden Markov model (HMM) that can be used both for predicting and explaining the behaviour of the robot in subsequent executions of the task. We demonstrate that it is feasible to automate the entire process of learning a high quality HMM from the data recorded by the robot during execution of its task.The learned HMM can be used both for monitoring and controlling the behaviour of the robot. The ultimate purpose of our work is to learn models for the full set of tasks associated with a given problem domain, and to integrate these models with a generative task planner. We want to show that these models can be used successfully in controlling the execution of a plan. However, this paper does not develop the planning and control aspects of our work, focussing instead on the learning methodology and the evaluation of a learned model. The essential property of the models we seek to construct is that the most probable trajectory through a model, given the observations made by the robot, accurately diagnoses, or explains, the behaviour that the robot actually performed when making these observations. In the work reported here we consider a navigation task. We explain the learning process, the experimental setup and the structure of the resulting learned behavioural models. We then evaluate the extent to which explanations proposed by the learned models accord with a human observer's interpretation of the behaviour exhibited by the robot in its execution of the task

    In-depth comparative evaluation of supervised machine learning approaches for detection of cybersecurity threats

    Get PDF
    This paper describes the process and results of analyzing CICIDS2017, a modern, labeled data set for testing intrusion detection systems. The data set is divided into several days, each pertaining to different attack classes (Dos, DDoS, infiltration, botnet, etc.). A pipeline has been created that includes nine supervised learning algorithms. The goal was binary classification of benign versus attack traffic. Cross-validated parameter optimization, using a voting mechanism that includes five classification metrics, was employed to select optimal parameters. These results were interpreted to discover whether certain parameter choices were dominant for most (or all) of the attack classes. Ultimately, every algorithm was retested with optimal parameters to obtain the final classification scores. During the review of these results, execution time, both on consumerand corporate-grade equipment, was taken into account as an additional requirement. The work detailed in this paper establishes a novel supervised machine learning performance baseline for CICIDS2017

    Structural graph matching using the EM algorithm and singular value decomposition

    Get PDF
    This paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is, it uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions: 1) commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as maximum-likelihood estimation using the apparatus of the EM algorithm; and 2) we cast the recovery of correspondence matches between the graph nodes in a matrix framework. This allows one to efficiently recover correspondence matches using the singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we demonstrate that the method offers comparable performance to more computationally demanding method

    A Perspective on Future Research Directions in Information Theory

    Get PDF
    Information theory is rapidly approaching its 70th birthday. What are promising future directions for research in information theory? Where will information theory be having the most impact in 10-20 years? What new and emerging areas are ripe for the most impact, of the sort that information theory has had on the telecommunications industry over the last 60 years? How should the IEEE Information Theory Society promote high-risk new research directions and broaden the reach of information theory, while continuing to be true to its ideals and insisting on the intellectual rigor that makes its breakthroughs so powerful? These are some of the questions that an ad hoc committee (composed of the present authors) explored over the past two years. We have discussed and debated these questions, and solicited detailed inputs from experts in fields including genomics, biology, economics, and neuroscience. This report is the result of these discussions
    corecore