13,931 research outputs found

    Simulation study of vertically stacked lateral Si nanowires transistors for 5 nm CMOS applications

    Get PDF
    In this paper we present a simulation study of vertically stacked lateral nanowires transistors (NWTs), which may have applications at 5nm CMOS technology. Our simulation approach is based on a collection of simulation techniques to capture the complexity in such ultra-scaled devices. Initially, we used drift-diffusion methodology with activated Poisson-Schrodinger quantum corrections to accurately capture the quantum confinement in the cross-section of the device. Ensemble Monte Carlo simulations are used to accurately evaluate the drive current capturing the complexity of the carrier transport in the NWTs. We compared the current flow in single, double, and triple vertically stacked lateral NWTs with and without contact resistance. The results presented here suggest a consistent link between channel strain and device performance. Furthermore, we propose a device structure for the 5nm CMOS technology node that meets the required industry scaling projection. We also consider the interplay between various sources of statistical variability and reliability in this work

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Pixel design and evaluation in CMOS image sensor technology

    Get PDF
    A chip designed in a 0.18 μm CMOS Image Sensor Technology (CIS) is presented which incorporates different pixel design alternatives for Active Pixel Sensor (APS). CIS technology improves characteristics such as sensitivity, dark current and noise, that are strongly layout dependent. This chip includes a set of pixel architectures where different parameters have been modified: layout of active diffusion, threshold voltage of the source follower transistor and the use of microlenses. Besides, structures to study the influence of crosstalk between pixels have been incorporated

    Design of Adiabatic MTJ-CMOS Hybrid Circuits

    Full text link
    Low-power designs are a necessity with the increasing demand of portable devices which are battery operated. In many of such devices the operational speed is not as important as battery life. Logic-in-memory structures using nano-devices and adiabatic designs are two methods to reduce the static and dynamic power consumption respectively. Magnetic tunnel junction (MTJ) is an emerging technology which has many advantages when used in logic-in-memory structures in conjunction with CMOS. In this paper, we introduce a novel adiabatic hybrid MTJ/CMOS structure which is used to design AND/NAND, XOR/XNOR and 1-bit full adder circuits. We simulate the designs using HSPICE with 32nm CMOS technology and compared it with a non-adiabatic hybrid MTJ/CMOS circuits. The proposed adiabatic MTJ/CMOS full adder design has more than 7 times lower power consumtion compared to the previous MTJ/CMOS full adder

    Co-integration of Silicon Nanodevices and NEMS for Advanced Information Processing (Invited Talk)

    No full text
    In this paper we present our recent attempts at developing the advanced information processing devices by integrating nano-electro-mechanical (NEM)structures into conventional silicon nanodevices. Firstly, we show high-speed and nonvolatile NEM memory which features a mechanically-bistable floating gate is integrated onto MOSFETs. Secondly we discuss hybrid systems of single-electron transistors and NEM structures for exploring new switching principles
    corecore