332 research outputs found

    A Unified Health Information System Framework for Connecting Data, People, Devices, and Systems

    Get PDF
    The COVID-19 pandemic has heightened the necessity for pervasive data and system interoperability to manage healthcare information and knowledge. There is an urgent need to better understand the role of interoperability in improving the societal responses to the pandemic. This paper explores data and system interoperability, a very specific area that could contribute to fighting COVID-19. Specifically, the authors propose a unified health information system framework to connect data, systems, and devices to increase interoperability and manage healthcare information and knowledge. A blockchain-based solution is also provided as a recommendation for improving the data and system interoperability in healthcare

    Factors driving enterprise adoption of blockchain technology

    Get PDF
    Amidst the rapidly evolving advancement of blockchain technology (BT), enterprises face notable challenges in leveraging its transformative potential, starting with a need to understand the technology and how it can be used for particular applications. Two challenges are that many BT trials have not been successful and large-scale implementations that have led to continued use are scarce. This research provides a comprehensive examination of factors that drive the successful adoption of BT for enterprise use cases. A dual-phased approach was employed. First, I introduce a taxonomy matrix correlating BT design characteristics with use case characteristics, offering a framework for BT design and benefits across different enterprise contexts. Second, I conducted case studies of five successful BT cases in large enterprises that led to the adoption in terms of continued use and contrasted them with one failure case. The data collection and analysis of the case studies encompassed technological, organizational, environmental, and inter-organizational variables that led to BT\u27s continued use. The cross-case analysis revealed that compatibility, relative advantage, and observability are primary technological factors contributing to continued use. Within the organizational dimension, organizational knowledge and internal characteristics emerged as crucial elements, while regulatory compliance came out to be a significant factor. Based on the cross-case analysis, I develop theoretical propositions about the factors that lead to the continued use of BT, which can be further validated and tested in future research

    A BLOCKCHAIN BASED POLICY FRAMEWORK FOR THE MANAGEMENT OF ELECTRONIC HEALTH RECORD (EHRS)

    Get PDF
    The rapid development of information technology during the last decade has greatly influenced all aspects of society, including individuals and enterprise organizations. Adopting new technologies by individuals and organizations depends on several factors, such as usability, available resources, support needed for adoption benefits, and return on investment, to mention a few. When it comes to the adoption of new technologies, one of the main challenges faced by organizations is the ability to effectively incorporate such technologies into their enterprise solutions to maximize the expected benefits. For the last several years, Blockchain technology has become a popular trend in a variety of sectors, attracting the attention of many governments and industries. Blockchain technology is a distributed ledger with the general purpose of information exchange that requires authentication and trust. It acts as an immutable ledger and allows for distributed, encrypted, and secure logging of digital transactions after the participating nodes or entities have reached a consensus. Because of the asymmetric cryptography and distributed consensus algorithms that have been built for users’ security and ledger consistency, this technology has gained a lot of attention. Blockchain has enormous potentials; however, as with any emerging technology, several drawbacks may exist and have negative consequences. To determine how the technology may be deployed, a framework is usually required. However, due to the lack of clear national and international standards for controlling and reducing risks associated with such technology, legal and organizational factors must be addressed before the technology can be implemented. The thesis herein is a proposal for such a new policy framework for Electronic Health Records (EHRs) management. Through the establishment of a new policy framework specifically related to Blockchain technology, this proposal aims to achieve the following: first, provide policies to govern sustainable management of the confidentiality, integrity, and availability of information concerning Blockchain applications and solution implementation across health care entities; and second, the prevention and reduction of related information security risks and threats

    Blockchain Technology: An Analysis of Potential Applications and Uses

    Get PDF
    This paper will focus on explaining what blockchain technology is, the fundamentals of how it works, and applications of it. By utilizing sophisticated cryptography, a distributed network, a specified order of events the technology is able to create a ledger that cannot be altered due to its existence on many computers that able to detect if the data has been changed or tampered with. To help illustrate the uses of blockchain technology the technical explanation is complemented with real and hypothetical ways that the technology it being used. The use of blockchain technology originated with financial application and has expanded to many industries as new and creative ideas come to fruition

    Blockchain for Healthcare: Securing Patient Data and Enabling Trusted Artificial Intelligence

    Get PDF
    Advances in information technology are digitizing the healthcare domain with the aim of improved medical services, diagnostics, continuous monitoring using wearables, etc., at reduced costs. This digitization improves the ease of computation, storage and access of medical records which enables better treatment experiences for patients. However, it comes with a risk of cyber attacks and security and privacy concerns on this digital data. In this work, we propose a Blockchain based solution for healthcare records to address the security and privacy concerns which are currently not present in existing e-Health systems. This work also explores the potential of building trusted Artificial Intelligence models over Blockchain in e-Health, where a transparent platform for consent-based data sharing is designed. Provenance of the consent of individuals and traceability of data sources used for building and training the AI model is captured in an immutable distributed data store. The audit trail of the data access captured using Blockchain provides the data owner to understand the exposure of the data. It also helps the user to understand the revenue models that could be built on top of this framework for commercial data sharing to build trusted AI models

    A Rule of Persons, Not Machines: The Limits of Legal Automation

    Get PDF

    A Blockchain Framework for Patient-Centered Health Records and Exchange (HealthChain): Evaluation and Proof-of-Concept Study

    Get PDF
    Background: Blockchain has the potential to disrupt the current modes of patient data access, accumulation, contribution, exchange, and control. Using interoperability standards, smart contracts, and cryptographic identities, patients can securely exchange data with providers and regulate access. The resulting comprehensive, longitudinal medical records can significantly improve the cost and quality of patient care for individuals and populations alike. Objective: This work presents HealthChain, a novel patient-centered blockchain framework. The intent is to bolster patient engagement, data curation, and regulated dissemination of accumulated information in a secure, interoperable environment. A mixed-block blockchain is proposed to support immutable logging and redactable patient blocks. Patient data are generated and exchanged through Health Level-7 Fast Healthcare Interoperability Resources, allowing seamless transfer with compliant systems. In addition, patients receive cryptographic identities in the form of public and private key pairs. Public keys are stored in the blockchain and are suitable for securing and verifying transactions. Furthermore, the envisaged system uses proxy re-encryption (PRE) to share information through revocable, smart contracts, ensuring the preservation of privacy and confidentiality. Finally, several PRE improvements are offered to enhance performance and security. Methods: The framework was formulated to address key barriers to blockchain adoption in health care, namely, information security, interoperability, data integrity, identity validation, and scalability. It supports 16 configurations through the manipulation of 4 modes. An open-source, proof-of-concept tool was developed to evaluate the performance of the novel patient block components and system configurations. To demonstrate the utility of the proposed framework and evaluate resource consumption, extensive testing was performed on each of the 16 configurations over a variety of scenarios involving a variable number of existing and imported records. Results: The results indicate several clear high-performing, low-bandwidth configurations, although they are not the strongest cryptographically. Of the strongest models, one’s anticipated cumulative record size is shown to influence the selection. Although the most efficient algorithm is ultimately user specific, Advanced Encryption Standard–encrypted data with static keys, incremental server storage, and no additional server-side encryption are the fastest and least bandwidth intensive, whereas proxy re-encrypted data with dynamic keys, incremental server storage, and additional server-side encryption are the best performing of the strongest configurations. Conclusions: Blockchain is a potent and viable technology for patient-centered access to and exchange of health information. By integrating a structured, interoperable design with patient-accumulated and generated data shared through smart contracts into a universally accessible blockchain, HealthChain presents patients and providers with access to consistent and comprehensive medical records. Challenges addressed include data security, interoperability, block storage, and patient-administered data access, with several configurations emerging for further consideration regarding speed and security

    #Blockchain4EU: Blockchain for Industrial Transformations

    Get PDF
    The project #Blockchain4EU is a forward looking exploration of existing, emerging and potential applications based on Blockchain and other DLTs for industrial / non-financial sectors. It combined Science and Technology Studies with a transdisciplinary policy lab toolbox filled with frameworks from Foresight and Horizon Scanning, Behavioural Insights, or Participatory, Critical and Speculative Design. Amid unfolding and uncertain developments of the Blockchain space, our research signals a number of crucial opportunities and challenges around a technology that could record, secure and transfer any digitised transaction or process, and thus potentially affect large parts of current industrial landscapes. This report offers key insights for its implementation and uptake by industry, businesses and SMEs, together with science for policy strategic recommendations.JRC.I.2-Foresight, Behavioural Insights and Design for Polic
    • …
    corecore