20,398 research outputs found

    Structure preserving Stochastic Impulse Methods for stiff Langevin systems with a uniform global error of order 1 or 1/2 on position

    Get PDF
    Impulse methods are generalized to a family of integrators for Langevin systems with quadratic stiff potentials and arbitrary soft potentials. Uniform error bounds (independent from stiff parameters) are obtained on integrated positions allowing for coarse integration steps. The resulting integrators are explicit and structure preserving (quasi-symplectic for Langevin systems)

    Order Reconstruction for Nematics on Squares and Regular Polygons: A Landau-de Gennes Study

    Full text link
    We construct an order reconstruction (OR)-type Landau-de Gennes critical point on a square domain of edge length λ\lambda, motivated by the well order reconstruction solution numerically reported by Kralj and Majumdar. The OR critical point is distinguished by an uniaxial cross with negative scalar order parameter along the square diagonals. The OR critical point is defined in terms of a saddle-type critical point of an associated scalar variational problem. The OR-type critical point is globally stable for small λ\lambda and undergoes a supercritical pitchfork bifurcation in the associated scalar variational setting. We consider generalizations of the OR-type critical point to a regular hexagon, accompanied by numerical estimates of stability criteria of such critical points on both a square and a hexagon in terms of material-dependent constants.Comment: 29 pages, 12 figure

    A volume-averaged nodal projection method for the Reissner-Mindlin plate model

    Get PDF
    We introduce a novel meshfree Galerkin method for the solution of Reissner-Mindlin plate problems that is written in terms of the primitive variables only (i.e., rotations and transverse displacement) and is devoid of shear-locking. The proposed approach uses linear maximum-entropy approximations and is built variationally on a two-field potential energy functional wherein the shear strain, written in terms of the primitive variables, is computed via a volume-averaged nodal projection operator that is constructed from the Kirchhoff constraint of the three-field mixed weak form. The stability of the method is rendered by adding bubble-like enrichment to the rotation degrees of freedom. Some benchmark problems are presented to demonstrate the accuracy and performance of the proposed method for a wide range of plate thicknesses
    corecore