41 research outputs found

    GPU-accelerated 3D visualisation and analysis of migratory behaviour of long lived birds

    Get PDF
    With the amount of data we collect increasing, due to the efficacy of tagging technology improving, the methods we previously applied have begun to take longer and longer to process. As we move forward, it is important that the methods we develop also evolve with the data we collect. Maritime visualisation has already begun to leverage the power of parallel processing to accelerate visualisation. However, some of these techniques require the use of distributed computing, that while useful for datasets that contain billions of points, is harder to implement due to hardware requirements. Here we show that movement ecology can also significantly benefit from the use of parallel processing, while using GPGPU acceleration to enable the use of a single workstation. With only minor adjustments, algorithms can be implemented in parallel, enabling for computation to be completed in real time. We show this by first implementing a GPGPU accelerated visualisation of global environmental datasets. Through the use of OpenGL and CUDA, it is possible to visualise a dataset containing over 25 million datapoints per timestamp and swap between timestamps in 5ms, allowing for environmental context to be considered when visualising trajectories in real time. These can then be used alongside different GPU accelerated visualisation methods, such as aggregate flow diagrams, to explore large datasets in real time. We also continue to apply GPGPU acceleration to the analysis of migratory data through the use of parallel primitives. With these parallel primitives we show that GPGPU acceleration can allow researchers to accelerate their workflow without the need to completely understand the complexities of GPU programming, allowing for orders of magnitude faster computation times when compared to sequential CPU methods

    RADGIS - an improved architecture for runtime-extensible, distributed GIS applications

    Get PDF
    A number of GIS architectures and technologies have emerged recently to facilitate the visualisation and processing of geospatial data over the Web. The work presented in this dissertation builds on these efforts and undertakes to overcome some of the major problems with traditional GIS client architectures, including application bloat, lack of customisability, and lack of interoperability between GIS products. In this dissertation we describe how a new client-side GIS architecture was developed and implemented as a proof-of-concept application called RADGIS, which is based on open standards and emerging distributed component-based software paradigms. RADGIS reflects the current trend in development focus from Web browser-based applications to customised clients, based on open standards, that make use of distributed Web services. While much attention has been paid to exposing data on the Web, there is growing momentum towards providing “value-added” services. A good example of this is the tremendous industry interest in the provision of location-based services, which has been discussed as a special use-case of our RADGIS architecture. Thus, in the near future client applications will not simply be used to access data transparently, but will also become facilitators for the location-transparent invocation of local and remote services. This flexible architecture will ensure that data can be stored and processed independently of the location of the client that wishes to view or interact with it. Our RADGIS application enables content developers and end-users to create and/or customise GIS applications dynamically at runtime through the incorporation of GIS services. This ensures that the client application has the flexibility to withstand changing levels of expertise or user requirements. These GIS services are implemented as components that execute locally on the client machine, or as remote CORBA Objects or EJBs. Assembly and deployment of these components is achieved using a specialised XML descriptor. This XML descriptor is written using a markup language that we developed specifically for this purpose, called DGCML, which contains deployment information, as well as a GUI specification and links to an XML-based help system that can be merged with the RADGIS client application’s existing help system. Thus, no additional requirements are imposed on object developers by the RADGIS architecture, i.e. there is no need to rewrite existing objects since DGCML acts as a runtime-customisable wrapper, allowing existing objects to be utilised by RADGIS. While the focus of this thesis has been on overcoming the above-mentioned problems with traditional GIS applications, the work described here can also be applied in a much broader context, especially in the development of highly customisable client applications that are able to integrate Web services at runtime

    I&T Magazine News Review Oct/Nov 1995 N°18

    Get PDF

    The abstract media model

    Get PDF

    Oceanographic Considerations for the Management and Protection of Surfing Breaks

    Get PDF
    Although the physical characteristics of surfing breaks are well described in the literature, there is little specific research on surfing and coastal management. Such research is required because coastal engineering has had significant impacts to surfing breaks, both positive and negative. Strategic planning and environmental impact assessment methods, a central tenet of integrated coastal zone management (ICZM), are recommended by this thesis to maximise surfing amenities. The research reported here identifies key oceanographic considerations required for ICZM around surfing breaks including: surfing wave parameters; surfing break components; relationship between surfer skill, surfing manoeuvre type and wave parameters; wind effects on waves; currents; geomorphic surfing break categorisation; beach-state and morphology; and offshore wave transformations. Key coastal activities that can have impacts to surfing breaks are identified. Environmental data types to consider during coastal studies around surfing breaks are presented and geographic information systems (GIS) are used to manage and interpret such information. To monitor surfing breaks, a shallow water multibeam echo sounding system was utilised and a RTK GPS water level correction and hydrographic GIS methodology developed. Including surfing in coastal management requires coastal engineering solutions that incorporate surfing. As an example, the efficacy of the artificial surfing reef (ASR) at Mount Maunganui, New Zealand, was evaluated. GIS, multibeam echo soundings, oceanographic measurements, photography, and wave modelling were all applied to monitor sea floor morphology around the reef. Results showed that the beach-state has more cellular circulation since the reef was installed, and a groin effect on the offshore bar was caused by the structure within the monitoring period, trapping sediment updrift and eroding sediment downdrift. No identifiable shoreline salient was observed. Landward of the reef, a scour hole ~3 times the surface area of the reef has formed. The current literature on ASRs has primarily focused on reef shape and its role in creating surfing waves. However, this study suggests that impacts to the offshore bar, beach-state, scour hole and surf zone hydrodynamics should all be included in future surfing reef designs. More real world reef studies, including ongoing monitoring of existing surfing reefs are required to validate theoretical concepts in the published literature

    Towards the development of a strategy for a national spatial data infrastructure

    Get PDF
    In today's world of ever advancing technology the time is precisely right for investment in the development and implementation of a national spatial data infrastructure. This implies that all spatial data presently scattered in different departments and organisations are coordinated and shared. In the Kingdom of Saudi Arabia there are a number of different mapping and Geographic Information System (GIS) activities being implemented within various government organisations, each with its own merits. Certain research and pilot projects have also been carried out aiming to provide help and recommendations with regard to spatial data sharing and to promote awareness of the importance of spatial data to the Kingdom's development. However, there is an urgent need for a consolidation of effort to avoid the costly mistake of duplication of work; hence the need for a unified national spatial data infrastructure. This research aims to develop a conceptual framework for a strategy for a national spatial data infrastructure (SNSDI) including its main components. A proposal is presented for a Saudi national spatial data infrastructure (which happens to have the same abbreviation - SNSDI) to consolidate isolated mapping and spatial data efforts in the Kingdom of Saudi Arabia in place of the current practice of each agency acting independently. This research project will hopefully provide a leadership role in developing a Kingdom-wide spatial data infrastructure

    Exploring multi-granular documentation strategies for the representation, discovery and use of geographic information

    Get PDF
    This thesis explores how digital representations of geography and Geographic Information (GI) may be described, and how these descriptions facilitate the use of the resources they depict. More specifically, it critically examines existing geospatial documentation practices and aims to identify opportunities for refinement therein, whether when used to signpost those data assets documented, for managing and maintaining information assets, or to assist in resource interpretation and discrimination. Documentation of GI can therefore facilitate its utilisation; it can be reasonably expected that by refining documentation practices, GI hold the potential for being better exploited. The underpinning theme connecting the individual papers of the thesis is one of multi-granular documentation. GI may be recorded at varying degrees of granularity, and yet traditional documentation efforts have predominantly focussed on a solitary level (that of the geospatial data layer). Developing documentation practices to account for other granularities permits the description of GI at different levels of detail and can further assist in realising its potential through better discovery, interpretation and use. One of the aims of the current work is to establish the merit of such multi-granular practices. Over the course of four research papers and a short research article, proprietary as well as open source software approaches are accordingly presented and provide proof-of-concept and conceptual solutions that aim to enhance GI utilisation through improved documentation practices. Presented in the context of an existing body of research, the proposed approaches focus on the technological infrastructure supporting data discovery, the automation of documentation processes and the implications of describing geospatial information resources of varying granularity. Each paper successively contributes to the notion that geospatial resources are potentially better exploited when documentation practices account for the multi-granular aspects of GI, and the varying ways in which such documentation may be used. In establishing the merit of multi-granular documentation, it is nevertheless recognised in the current work that instituting a comprehensive documentation strategy at several granularities may be unrealistic for some geospatial applications. Pragmatically, the level of effort required would be excessive, making universal adoption impractical. Considering however the ever-expanding volumes of geospatial data gathered and the demand for ways of managing and maintaining the usefulness of potentially unwieldy repositories, improved documentation practices are required. A system of hierarchical documentation, of self-documenting information, would provide for information discovery and retrieval from such expanding resource pools at multiple granularities, improve the accessibility of GI and ultimately, its utilisation
    corecore