8,963 research outputs found

    Scale-invariant systems realize nonlinear differential operators

    Get PDF
    In recent years, several biomolecular systems have been shown to be scale-invariant (SI), i.e. to show the same output dynamics when exposed to geometrically scaled input signals (u → pu, p > 0) after pre-adaptation to accordingly scaled constant inputs. In this article, we show that SI systems-as well as systems invariant with respect to other input transformations-can realize nonlinear differential operators: when excited by inputs obeying functional forms characteristic for a given class of invariant systems, the systems' outputs converge to constant values directly quantifying the speed of the input

    Zeros of nonlinear systems with input invariances

    Get PDF
    A nonlinear system possesses an invariance with respect to a set of transformations if its output dynamics remain invariant when transforming the input, and adjusting the initial condition accordingly. Most research has focused on invariances with respect to time-independent pointwise transformations like translational-invariance (u(t) -> u(t) + p, p in R) or scale-invariance (u(t) -> pu(t), p in R>0). In this article, we introduce the concept of s0-invariances with respect to continuous input transformations exponentially growing/decaying over time. We show that s0-invariant systems not only encompass linear time-invariant (LTI) systems with transfer functions having an irreducible zero at s0 in R, but also that the input/output relationship of nonlinear s0-invariant systems possesses properties well known from their linear counterparts. Furthermore, we extend the concept of s0-invariances to second- and higher-order s0-invariances, corresponding to invariances with respect to transformations of the time-derivatives of the input, and encompassing LTI systems with zeros of multiplicity two or higher. Finally, we show that nth-order 0-invariant systems realize – under mild conditions – nth-order nonlinear differential operators: when excited by an input of a characteristic functional form, the system’s output converges to a constant value only depending on the nth (nonlinear) derivative of the input

    Higher-Spin Theory and Space-Time Metamorphoses

    Full text link
    Introductory lectures on higher-spin gauge theory given at 7 Aegean workshop on non-Einstein theories of gravity. The emphasis is on qualitative features of the higher-spin gauge theory and peculiarities of its space-time interpretation. In particular, it is explained that Riemannian geometry cannot play a fundamental role in the higher-spin gauge theory. The higher-spin symmetries are argued to occur at ultra high energy scales beyond the Planck scale. This suggests that the higher-spin gauge theory can help to understand Quantum Gravity. Various types of higher-spin dualities are briefly discussed.Comment: 37 pages, no figures; V2: references adde

    Potential Nonclassical Symmetries and Solutions of Fast Diffusion Equation

    Full text link
    The fast diffusion equation ut=(u−1ux)xu_t=(u^{-1}u_x)_x is investigated from the symmetry point of view in development of the paper by Gandarias [Phys. Lett. A 286 (2001) 153-160]. After studying equivalence of nonclassical symmetries with respect to a transformation group, we completely classify the nonclassical symmetries of the corresponding potential equation. As a result, new wide classes of potential nonclassical symmetries of the fast diffusion equation are obtained. The set of known exact non-Lie solutions are supplemented with the similar ones. It is shown that all known non-Lie solutions of the fast diffusion equation are exhausted by ones which can be constructed in a regular way with the above potential nonclassical symmetries. Connection between classes of nonclassical and potential nonclassical symmetries of the fast diffusion equation is found.Comment: 13 pages, section 3 is essentially revise
    • …
    corecore