38,750 research outputs found

    Forecasting the geomagnetic activity of the Dst Index using radial basis function networks

    Get PDF
    The Dst index is a key parameter which characterises the disturbance of the geomagnetic field in magnetic storms. Modelling of the Dst index is thus very important for the analysis of the geomagnetic field. A data-based modelling approach, aimed at obtaining efficient models based on limited input-output observational data, provides a powerful tool for analysing and forecasting geomagnetic activities including the prediction of the Dst index. Radial basis function (RBF) networks are an important and popular network model for nonlinear system identification and dynamical modelling. A novel generalised multiscale RBF (MSRBF) network is introduced for Dst index modelling. The proposed MSRBF network can easily be converted into a linear-in-the-parameters form and the training of the linear network model can easily be implemented using an orthogonal least squares (OLS) type algorithm. One advantage of the new MSRBF network, compared with traditional single scale RBF networks, is that the new network is more flexible for describing complex nonlinear dynamical systems

    Neural networks and support vector machines based bio-activity classification

    Get PDF
    Classification of various compounds into their respective biological activity classes is important in drug discovery applications from an early phase virtual compound filtering and screening point of view. In this work two types of neural networks, multi layer perceptron (MLP) and radial basis functions (RBF), and support vector machines (SVM) were employed for the classification of three types of biologically active enzyme inhibitors. Both of the networks were trained with back propagation learning method with chemical compounds whose active inhibition properties were previously known. A group of topological indices, selected with the help of principle component analysis (PCA) were used as descriptors. The results of all the three classification methods show that the performance of both the neural networks is better than the SVM

    The statistical Analysis of Star Clusters

    Full text link
    We review a range of stastistical methods for analyzing the structures of star clusters, and derive a new measure Q{\cal Q} which both quantifies, and distinguishes between, a (relatively smooth) large-scale radial density gradient and multi-scale (fractal) sub-clustering. Q is derived from the normalised correlation length and the normalised edge length of the minimal spanning tree for each cluster

    Using growing RBF-nets in rubber industry process control

    Get PDF
    This paper describes the use of a Radial Basis Function (RBF) neural network in the approximation of process parameters for the extrusion of a rubber profile in tyre production. After introducing the rubber industry problem, the RBF network model and the RBF net learning algorithm are developed, which uses a growing number of RBF units to compensate the approximation error up to the desired error limit. Its performance is shown for simple analytic examples. Then the paper describes the modelling of the industrial problem. Simulations show good results, even when using only a few training samples. The paper is concluded by a discussion of possible systematic error influences, improvements and potential generalisation benefits. Keywords: Adaptive process control; Parameter estimation; RBF-nets; Rubber extrusio
    corecore