1,160 research outputs found

    Unsupervised morphological segmentation for images

    Get PDF
    This paper deals with a morphological approach to unsupervised image segmentation. The proposed technique relies on a multiscale Top-Down approach allowing a hierarchical processing of the data ranging from the most global scale to the most detailed one. At each scale, the algorithm consists of four steps: image simplification, feature extraction, contour localization and quality estimation. The main emphasis of this paper is to discuss the selection of a simplification filter for segmentation. Morphological filters based on reconstruction proved to be very efficient for this purpose. The resulting unsupervised algorithm is very robust and can deal with very different type of images.Peer ReviewedPostprint (published version

    Particle-by-Particle Reconstruction of Ultrafiltration Cakes in 3D from Binarized TEM Images

    Get PDF
    Transmission electron microscopy (TEM) imaging is one of the few techniques available for direct observation of the microstructure of ultrafiltration cakes. TEM images yield local microstructural information in the form of two-dimensional grayscale images of slices a few particle diameters in thickness. This work presents an innovative particle-by-particle reconstruction scheme for simulating ultrafiltration cake microstructure in three dimensions from TEM images. The scheme uses binarized TEM images, thereby permitting use of lesser-quality images. It is able to account for short- and long-range order within ultrafiltration cake structure by matching the morphology of simulated and measured microstructures at a number of resolutions and scales identifiable within the observed microstructure. In the end, simulated microstructures are intended for improving our understanding of the relationships between cake morphology, ultrafiltration performance, and operating conditions

    Virtual restoration of the Ghent altarpiece using crack detection and inpainting

    Get PDF
    In this paper, we present a new method for virtual restoration of digitized paintings, with the special focus on the Ghent Altarpiece (1432), one of Belgium's greatest masterpieces. The goal of the work is to remove cracks from the digitized painting thereby approximating how the painting looked like before ageing for nearly 600 years and aiding art historical and palaeographical analysis. For crack detection, we employ a multiscale morphological approach, which can cope with greatly varying thickness of the cracks as well as with their varying intensities (from dark to the light ones). Due to the content of the painting (with extremely many fine details) and complex type of cracks (including inconsistent whitish clouds around them), the available inpainting methods do not provide satisfactory results on many parts of the painting. We show that patch-based methods outperform pixel-based ones, but leaving still much room for improvements in this application. We propose a new method for candidate patch selection, which can be combined with different patch-based inpainting methods to improve their performance in crack removal. The results demonstrate improved performance, with less artefacts and better preserved fine details

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Morphological PDE and dilation/erosion semigroups on length spaces

    No full text
    International audienceThis paper gives a survey of recent research on Hamilton-Jacobi partial dierential equations (PDE) on length spaces. This theory provides the background to formulate morphological PDEs for processing data and images supported on a length space, without the need of a Riemmanian structure. We first introduce the most general pair of dilation/erosion semigroups on a length space, whose basic ingredients are the metric distance and a convex shape function. The second objective is to show under which conditions the solution of a morphological PDE in the length space framework is equal to the dilation/erosion semigroups

    From homogeneous to fractal normal and tumorous microvascular networks in the brain

    Get PDF
    We studied normal and tumorous three-dimensional (3D) microvascular networks in primate and rat brain. Tissues were prepared following a new preparation technique intended for high-resolution synchrotron tomography of microvascular networks. The resulting 3D images with a spatial resolution of less than the minimum capillary diameter permit a complete description of the entire vascular network for volumes as large as tens of cubic millimeters. The structural properties of the vascular networks were investigated by several multiscale methods such as fractal and power- spectrum analysis. These investigations gave a new coherent picture of normal and pathological complex vascular structures. They showed that normal cortical vascular networks have scale- invariant fractal properties on a small scale from 1.4 lm up to 40 to 65 lm. Above this threshold, vascular networks can be considered as homogeneous. Tumor vascular networks show similar characteristics, but the validity range of the fractal regime extend to much larger spatial dimensions. These 3D results shed new light on previous two dimensional analyses giving for the first time a direct measurement of vascular modules associated with vessel-tissue surface exchange

    General Adaptive Neighborhood Image Processing. Part I: Introduction and Theoretical Aspects

    Get PDF
    30 pagesInternational audienceThe so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The Adaptive Neighborhood (AN) paradigm allows the building of new image processing transformations using context-dependent analysis. Such operators are no longer spatially invariant, but vary over the whole image with ANs as adaptive operational windows, taking intrinsically into account the local image features. This AN concept is here largely extended, using well-defined mathematical concepts, to that General Adaptive Neighborhood (GAN) in two main ways. Firstly, an analyzing criterion is added within the definition of the ANs in order to consider the radiometric, morphological or geometrical characteristics of the image, allowing a more significant spatial analysis to be addressed. Secondly, general linear image processing frameworks are introduced in the GAN approach, using concepts of abstract linear algebra, so as to develop operators that are consistent with the physical and/or physiological settings of the image to be processed. In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting transforms perform a relevant spatially-adaptive image processing, in an intrinsic manner, that is to say without a priori knowledge needed about the image structures. Moreover, in several important and practical cases, the adaptive morphological operators are connected, which is an overwhelming advantage compared to the usual ones that fail to this property

    Text Localization in Video Using Multiscale Weber's Local Descriptor

    Full text link
    In this paper, we propose a novel approach for detecting the text present in videos and scene images based on the Multiscale Weber's Local Descriptor (MWLD). Given an input video, the shots are identified and the key frames are extracted based on their spatio-temporal relationship. From each key frame, we detect the local region information using WLD with different radius and neighborhood relationship of pixel values and hence obtained intensity enhanced key frames at multiple scales. These multiscale WLD key frames are merged together and then the horizontal gradients are computed using morphological operations. The obtained results are then binarized and the false positives are eliminated based on geometrical properties. Finally, we employ connected component analysis and morphological dilation operation to determine the text regions that aids in text localization. The experimental results obtained on publicly available standard Hua, Horizontal-1 and Horizontal-2 video dataset illustrate that the proposed method can accurately detect and localize texts of various sizes, fonts and colors in videos.Comment: IEEE SPICES, 201

    ( max , min )-convolution and Mathematical Morphology

    No full text
    International audienceA formal denition of morphological operators in (max, min)-algebra is introduced and their relevant properties from an algebraic viewpoint are stated. Some previous works in mathematical morphology have already encountered this type of operators but a systematic study of them has not yet been undertaken in the morphological literature. It is shown in particular that one of their fundamental property is the equivalence with level set processing using Minkowski addition and subtraction. Theory of viscosity solutions of the Hamilton-Jacobi equation with Hamiltonians containing u and Du is summarized, in particular, the corresponding Hopf-Lax-Oleinik formulas as (max, min)-operators. Links between (max, min)-convolutions and some previous approaches of unconventional morphology, in particular fuzzy morphology and viscous morphology, are reviewed

    Morphological bilateral filtering

    No full text
    International audienceA current challenging topic in mathematical morphology is the construction of locally adaptive operators; i.e., structuring functions that are dependent on the input image itself at each position. Development of spatially-variant filtering is well established in the theory and practice of Gaussian filtering. The aim of the first part of the paper is to study how to generalize these convolution-based approaches in order to introduce adaptive nonlinear filters that asymptotically correspond to spatially-variant morphological dilation and erosion. In particular, starting from the bilateral filtering framework and using the notion of counter-harmonic mean, our goal is to propose a new low complexity approach to define spatially-variant bilateral structuring functions. Then, in the second part of the paper, an original formulation of spatially-variant flat morphological filters is proposed, where the adaptive structuring elements are obtained by thresholding the bilateral structuring functions. The methodological results of the paper are illustrated with various comparative examples
    • …
    corecore