6,253 research outputs found

    Scalable Audience Reach Estimation in Real-time Online Advertising

    Full text link
    Online advertising has been introduced as one of the most efficient methods of advertising throughout the recent years. Yet, advertisers are concerned about the efficiency of their online advertising campaigns and consequently, would like to restrict their ad impressions to certain websites and/or certain groups of audience. These restrictions, known as targeting criteria, limit the reachability for better performance. This trade-off between reachability and performance illustrates a need for a forecasting system that can quickly predict/estimate (with good accuracy) this trade-off. Designing such a system is challenging due to (a) the huge amount of data to process, and, (b) the need for fast and accurate estimates. In this paper, we propose a distributed fault tolerant system that can generate such estimates fast with good accuracy. The main idea is to keep a small representative sample in memory across multiple machines and formulate the forecasting problem as queries against the sample. The key challenge is to find the best strata across the past data, perform multivariate stratified sampling while ensuring fuzzy fall-back to cover the small minorities. Our results show a significant improvement over the uniform and simple stratified sampling strategies which are currently widely used in the industry

    Architecture for Analysis of Streaming Data

    Full text link
    While several attempts have been made to construct a scalable and flexible architecture for analysis of streaming data, no general model to tackle this task exists. Thus, our goal is to build a scalable and maintainable architecture for performing analytics on streaming data. To reach this goal, we introduce a 7-layered architecture consisting of microservices and publish-subscribe software. Our study shows that this architecture yields a good balance between scalability and maintainability due to high cohesion and low coupling of the solution, as well as asynchronous communication between the layers. This architecture can help practitioners to improve their analytic solutions. It is also of interest to academics, as it is a building block for a general architecture for processing streaming data

    Bayesian emulation for optimization in multi-step portfolio decisions

    Full text link
    We discuss the Bayesian emulation approach to computational solution of multi-step portfolio studies in financial time series. "Bayesian emulation for decisions" involves mapping the technical structure of a decision analysis problem to that of Bayesian inference in a purely synthetic "emulating" statistical model. This provides access to standard posterior analytic, simulation and optimization methods that yield indirect solutions of the decision problem. We develop this in time series portfolio analysis using classes of economically and psychologically relevant multi-step ahead portfolio utility functions. Studies with multivariate currency, commodity and stock index time series illustrate the approach and show some of the practical utility and benefits of the Bayesian emulation methodology.Comment: 24 pages, 7 figures, 2 table

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    EOD systems and facilities workload requirements forecast

    Get PDF
    There are no author-identified significant results in this report

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table
    corecore