944 research outputs found

    Scale- and Context-Aware Convolutional Non-intrusive Load Monitoring

    Full text link
    Non-intrusive load monitoring addresses the challenging task of decomposing the aggregate signal of a household's electricity consumption into appliance-level data without installing dedicated meters. By detecting load malfunction and recommending energy reduction programs, cost-effective non-intrusive load monitoring provides intelligent demand-side management for utilities and end users. In this paper, we boost the accuracy of energy disaggregation with a novel neural network structure named scale- and context-aware network, which exploits multi-scale features and contextual information. Specifically, we develop a multi-branch architecture with multiple receptive field sizes and branch-wise gates that connect the branches in the sub-networks. We build a self-attention module to facilitate the integration of global context, and we incorporate an adversarial loss and on-state augmentation to further improve the model's performance. Extensive simulation results tested on open datasets corroborate the merits of the proposed approach, which significantly outperforms state-of-the-art methods.Comment: Accepted by IEEE Transactions on Power System

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Robust energy disaggregation using appliance-specific temporal contextual information

    Get PDF
    An extension of the baseline non-intrusive load monitoring approach for energy disaggregation using temporal contextual information is presented in this paper. In detail, the proposed approach uses a two-stage disaggregation methodology with appliance-specific temporal contextual information in order to capture time-varying power consumption patterns in low-frequency datasets. The proposed methodology was evaluated using datasets of different sampling frequency, number and type of appliances. When employing appliance-specific temporal contextual information, an improvement of 1.5% up to 7.3% was observed. With the two-stage disaggregation architecture and using appliance-specific temporal contextual information, the overall energy disaggregation accuracy was further improved across all evaluated datasets with the maximum observed improvement, in terms of absolute increase of accuracy, being equal to 6.8%, thus resulting in a maximum total energy disaggregation accuracy improvement equal to 10.0%.Peer reviewedFinal Published versio

    Residential Energy Management for Renewable Energy Systems Incorporating Data-Driven Unravelling of User Behavior

    Get PDF
    The penetration of distributed energy resources (DERs) such as photovoltaic (PV) at the residential level has increased rapidly over the past year. It will inevitably induce a paradigm shift in end-user and operations of local energy markets. The energy community with high integration of DERs initiative allows its users to manage their generation (for prosumers) and consumption more efficiently, resulting in various economic, social, and environmental benefits. Specifically, the local energy communities and their members can legally engage in energy generation, distribution, supply, consumption, storage, and sharing to increase levels of autonomy from the power grid, advance energy efficiency, reduce energy costs, and decrease carbon emissions. Reducing energy consumption costs is difficult for residential energy management without understanding the users' preferences. The advanced measurement and communication technologies provide opportunities for individual consumers/prosumers and local energy communities to adopt a more active role in renewable-rich smart grids. Non-intrusive load monitoring (NILM) monitors the load activities from a single point source, such as a smart meter, based on the assumption that different appliances have different power consumption levels and features. NILM can extract the users' load consumption from the smart meter to support the development of the smart grid for better energy management and demand response (DR). Yet to date, how to design residential energy management, including home energy management systems (HEMS) and community energy management systems (CEMS), with an understanding of user preferences and willingness to participate in energy management, is still far from being fully investigated. This thesis aims to develop methodologies for a resident energy management system for renewable energy systems (RES) incorporating data-driven unravelling of the user's energy consumption behaviour

    Machine learning techniques for sensor-based household activity recognition and forecasting

    Get PDF
    Thanks to the recent development of cheap and unobtrusive smart-home sensors, ambient assisted living tools promise to offer innovative solutions to support the users in carrying out their everyday activities in a smoother and more sustainable way. To be effective, these solutions need to constantly monitor and forecast the activities of daily living carried out by the inhabitants. The Machine Learning field has seen significant advancements in the development of new techniques, especially regarding deep learning algorithms. Such techniques can be successfully applied to household activity signal data to benefit the user in several applications. This thesis therefore aims to produce a contribution that artificial intelligence can make in the field of activity recognition and energy consumption. The effective recognition of common actions or the use of high-consumption appliances would lead to user profiling, thus enabling the optimisation of energy consumption in favour of the user himself or the energy community in general. Avoiding wasting electricity and optimising its consumption is one of the main objectives of the community. This work is therefore intended as a forerunner for future studies that will allow, through the results in this thesis, the creation of increasingly intelligent systems capable of making the best use of the user's resources for everyday life actions. Namely, this thesis focuses on signals from sensors installed in a house: data from position sensors, door sensors, smartphones or smart meters, and investigates the use of advanced machine learning algorithms to recognize and forecast inhabitant activities, including the use of appliances and the power consumption. The thesis is structured into four main chapters, each of which represents a contribution regarding Machine Learning or Deep Learning techniques for addressing challenges related to the aforementioned data from different sources. The first contribution highlights the importance of exploiting dimensionality reduction techniques that can simplify a Machine Learning model and increase its efficiency by identifying and retaining only the most informative and predictive features for activity recognition. In more detail, it is presented an extensive experimental study involving several feature selection algorithms and multiple Human Activity Recognition benchmarks containing mobile sensor data. In the second contribution, we propose a machine learning approach to forecast future energy consumption considering not only past consumption data, but also context data such as inhabitants’ actions and activities, use of household appliances, interaction with furniture and doors, and environmental data. We performed an experimental evaluation with real-world data acquired in an instrumented environment from a large user group. Finally, the last two contributions address the Non-Intrusive-Load-Monitoring problem. In one case, the aim is to identify the operating state (on/off) and the precise energy consumption of individual electrical loads, considering only the aggregate consumption of these loads as input. We use a Deep Learning method to disaggregate the low-frequency energy signal generated directly by the new generation smart meters being deployed in Italy, without the need for additional specific hardware. In the other case, driven by the need to build intelligent non-intrusive algorithms for disaggregating electrical signals, the work aims to recognize which appliance is activated by analyzing energy measurements and classifying appliances through Machine Learning techniques. Namely, we present a new way of approaching the problem by unifying Single Label (single active appliance recognition) and Multi Label (multiple active appliance recognition) learning paradigms. This combined approach, supplemented with an event detector, which suggests the instants of activation, would allow the development of an end-to-end NILM approach

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal

    Designing Artificial Neural Networks (ANNs) for Electrical Appliance Classification in Smart Energy Distribution Systems

    Get PDF
    En este proyecto se abordará el problema de la desagregación del consumo eléctrico a través del diseño de sistemas inteligentes, basados en redes neuronales profundas, que puedan formar parte de sistemas más amplios de gestión y distribución de energía. Durante la definición estará presente la búsqueda de una complejidad computacional adecuada que permita una implementación posterior de bajo costo. En concreto, estos sistemas realizarán el proceso de clasificación a partir de los cambios en la corriente eléctrica provocados por los distintos electrodomésticos. Para la evaluación y comparación de las diferentes propuestas se hará uso de la base de datos BLUED.This project will address the energy consumption disaggregation problem through the design of intelligent systems, based on deep artificial neural networks, which would be part of broader energy management and distribution systems. The search for adequate computational complexity that will allow a subsequent implementation of low cost will be present during algorithm definition. Specifically, these systems will carry out the classification process based on the changes caused by the different appliances in the electric current. For the evaluation and comparison of the different proposals, the BLUED database will be used.Máster Universitario en Ingeniería Industrial (M141

    Fall Detection Using Neural Networks

    Get PDF
    Falls inside of the home is a major concern facing the aging population. Monitoring the home environment to detect a fall can prevent profound consequences due to delayed emergency response. One option to monitor a home environment is to use a camera-based fall detection system. Conceptual designs vary from 3D positional monitoring (multi-camera monitoring) to body position and limb speed classification. Research shows varying degree of success with such concepts when designed with multi-camera setup. However, camera-based systems are inherently intrusive and costly to implement. In this research, we use a sound-based system to detect fall events. Acoustic sensors are used to monitor various sound events and feed a trained machine learning model that makes predictions of a fall events. Audio samples from the sensors are converted to frequency domain images using Mel-Frequency Cepstral Coefficients method. These images are used by a trained convolution neural network to predict a fall. A publicly available dataset of household sounds is used to train the model. Varying the model\u27s complexity, we found an optimal architecture that achieves high performance while being computationally less extensive compared to the other models with similar performance. We deployed this model in a NVIDIA Jetson Nano Developer Kit

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table
    corecore