867 research outputs found

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    This workshop was well attended by 52 participants with broad geographic representation from 11 countries and 3 continents. It was a nice blend of researchers with various backgrounds

    Das unstetige Galerkinverfahren für Strömungen mit freier Oberfläche und im Grundwasserbereich in geophysikalischen Anwendungen

    Get PDF
    Free surface flows and subsurface flows appear in a broad range of geophysical applications and in many environmental settings situations arise which even require the coupling of free surface and subsurface flows. Many of these application scenarios are characterized by large domain sizes and long simulation times. Hence, they need considerable amounts of computational work to achieve accurate solutions and the use of efficient algorithms and high performance computing resources to obtain results within a reasonable time frame is mandatory. Discontinuous Galerkin methods are a class of numerical methods for solving differential equations that share characteristics with methods from the finite volume and finite element frameworks. They feature high approximation orders, offer a large degree of flexibility, and are well-suited for parallel computing. This thesis consists of eight articles and an extended summary that describe the application of discontinuous Galerkin methods to mathematical models including free surface and subsurface flow scenarios with a strong focus on computational aspects. It covers discretization and implementation aspects, the parallelization of the method, and discrete stability analysis of the coupled model.Für viele geophysikalische Anwendungen spielen Strömungen mit freier Oberfläche und im Grundwasserbereich oder sogar die Kopplung dieser beiden eine zentrale Rolle. Oftmals charakteristisch für diese Anwendungsszenarien sind große Rechengebiete und lange Simulationszeiten. Folglich ist das Berechnen akkurater Lösungen mit beträchtlichem Rechenaufwand verbunden und der Einsatz effizienter Lösungsverfahren sowie von Techniken des Hochleistungsrechnens obligatorisch, um Ergebnisse innerhalb eines annehmbaren Zeitrahmens zu erhalten. Unstetige Galerkinverfahren stellen eine Gruppe numerischer Verfahren zum Lösen von Differentialgleichungen dar, und kombinieren Eigenschaften von Methoden der Finiten Volumen- und Finiten Elementeverfahren. Sie ermöglichen hohe Approximationsordnungen, bieten einen hohen Grad an Flexibilität und sind für paralleles Rechnen gut geeignet. Diese Dissertation besteht aus acht Artikeln und einer erweiterten Zusammenfassung, in diesen die Anwendung unstetiger Galerkinverfahren auf mathematische Modelle inklusive solcher für Strömungen mit freier Oberfläche und im Grundwasserbereich beschrieben wird. Die behandelten Themen umfassen Diskretisierungs- und Implementierungsaspekte, die Parallelisierung der Methode sowie eine diskrete Stabilitätsanalyse des gekoppelten Modells

    Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity

    Get PDF
    Discontinuous Galerkin (DG) discretizations with exact representation of the geometry and local polynomial degree adaptivity are revisited. Hybridization techniques are employed to reduce the computational cost of DG approximations and devise the hybridizable discontinuous Galerkin (HDG) method. Exact geometry described by non-uniform rational B-splines (NURBS) is integrated into HDG using the framework of the NURBS-enhanced finite element method (NEFEM). Moreover, optimal convergence and superconvergence properties of HDG-Voigt formulation in presence of symmetric second-order tensors are exploited to construct inexpensive error indicators and drive degree adaptive procedures. Applications involving the numerical simulation of problems in electrostatics, linear elasticity and incompressible viscous flows are presented. Moreover, this is done for both high-order HDG approximations and the lowest-order framework of face-centered finite volumes (FCFV).Peer ReviewedPostprint (author's final draft

    Hybrid multigrid methods for high-order discontinuous Galerkin discretizations

    Full text link
    The present work develops hybrid multigrid methods for high-order discontinuous Galerkin discretizations of elliptic problems. Fast matrix-free operator evaluation on tensor product elements is used to devise a computationally efficient PDE solver. The multigrid hierarchy exploits all possibilities of geometric, polynomial, and algebraic coarsening, targeting engineering applications on complex geometries. Additionally, a transfer from discontinuous to continuous function spaces is performed within the multigrid hierarchy. This does not only further reduce the problem size of the coarse-grid problem, but also leads to a discretization most suitable for state-of-the-art algebraic multigrid methods applied as coarse-grid solver. The relevant design choices regarding the selection of optimal multigrid coarsening strategies among the various possibilities are discussed with the metric of computational costs as the driving force for algorithmic selections. We find that a transfer to a continuous function space at highest polynomial degree (or on the finest mesh), followed by polynomial and geometric coarsening, shows the best overall performance. The success of this particular multigrid strategy is due to a significant reduction in iteration counts as compared to a transfer from discontinuous to continuous function spaces at lowest polynomial degree (or on the coarsest mesh). The coarsening strategy with transfer to a continuous function space on the finest level leads to a multigrid algorithm that is robust with respect to the penalty parameter of the SIPG method. Detailed numerical investigations are conducted for a series of examples ranging from academic test cases to more complex, practically relevant geometries. Performance comparisons to state-of-the-art methods from the literature demonstrate the versatility and computational efficiency of the proposed multigrid algorithms

    SpECTRE: A Task-based Discontinuous Galerkin Code for Relativistic Astrophysics

    Get PDF
    We introduce a new relativistic astrophysics code, SpECTRE, that combines a discontinuous Galerkin method with a task-based parallelism model. SpECTRE's goal is to achieve more accurate solutions for challenging relativistic astrophysics problems such as core-collapse supernovae and binary neutron star mergers. The robustness of the discontinuous Galerkin method allows for the use of high-resolution shock capturing methods in regions where (relativistic) shocks are found, while exploiting high-order accuracy in smooth regions. A task-based parallelism model allows efficient use of the largest supercomputers for problems with a heterogeneous workload over disparate spatial and temporal scales. We argue that the locality and algorithmic structure of discontinuous Galerkin methods will exhibit good scalability within a task-based parallelism framework. We demonstrate the code on a wide variety of challenging benchmark problems in (non)-relativistic (magneto)-hydrodynamics. We demonstrate the code's scalability including its strong scaling on the NCSA Blue Waters supercomputer up to the machine's full capacity of 22,380 nodes using 671,400 threads.Comment: 41 pages, 13 figures, and 7 tables. Ancillary data contains simulation input file
    • …
    corecore