35,381 research outputs found

    Maximum Entropy for Gravitational Wave Data Analysis: Inferring the Physical Parameters of Core-Collapse Supernovae

    Full text link
    The gravitational wave signal arising from the collapsing iron core of a Type II supernova progenitor star carries with it the imprint of the progenitor's mass, rotation rate, degree of differential rotation, and the bounce depth. Here, we show how to infer the gravitational radiation waveform of a core collapse event from noisy observations in a network of two or more LIGO-like gravitational wave detectors and, from the recovered signal, constrain these source properties. Using these techniques, predictions from recent core collapse modeling efforts, and the LIGO performance during its S4 science run, we also show that gravitational wave observations by LIGO might have been sufficient to provide reasonable estimates of the progenitor mass, angular momentum and differential angular momentum, and depth of the core at bounce, for a rotating core collapse event at a distance of a few kpc.Comment: 44 pages, 12 figures; accepted version scheduled to appear in Ap J 1 April 200

    Strong experimental guarantees in ultrafast quantum random number generation

    Get PDF
    We describe a methodology and standard of proof for experimental claims of quantum random number generation (QRNG), analogous to well-established methods from precision measurement. For appropriately constructed physical implementations, lower bounds on the quantum contribution to the average min-entropy can be derived from measurements on the QRNG output. Given these bounds, randomness extractors allow generation of nearly perfect "{\epsilon}-random" bit streams. An analysis of experimental uncertainties then gives experimentally derived confidence levels on the {\epsilon} randomness of these sequences. We demonstrate the methodology by application to phase-diffusion QRNG, driven by spontaneous emission as a trusted randomness source. All other factors, including classical phase noise, amplitude fluctuations, digitization errors and correlations due to finite detection bandwidth, are treated with paranoid caution, i.e., assuming the worst possible behaviors consistent with observations. A data-constrained numerical optimization of the distribution of untrusted parameters is used to lower bound the average min-entropy. Under this paranoid analysis, the QRNG remains efficient, generating at least 2.3 quantum random bits per symbol with 8-bit digitization and at least 0.83 quantum random bits per symbol with binary digitization, at a confidence level of 0.99993. The result demonstrates ultrafast QRNG with strong experimental guarantees.Comment: 11 pages, 9 figure

    Experimental multi-photon-resolving detector using a single avalanche photodiode

    Get PDF
    A multichannel detector has been constructed using a single avalanche photodiode and a fiber-loop delay line. Detection probabilities of the channels can be set using a variable-ratio coupler. The performance of the detector is demonstrated on its capability to distinguish multi-photon states (containing two or more photons) from the one-photon state and the vacuum state.Comment: LATEX, 11 pages, 5 PostScript figure

    Failure of Standard Thermodynamics in Planck Scale Black Hole System

    Full text link
    The final stage of the black hole evaporation is a matter of debates in the existing literature. In this paper, we consider this problem within two alternative approaches: noncommutative geometry(NCG) and the generalized uncertainty principle(GUP). We compare the results of two scenarios to find a relation between parameters of these approaches. Our results show some extraordinary thermodynamical behavior for Planck size black hole evaporation. These extraordinary behavior may reflect the need for a fractal nonextensive thermodynamics for Planck size black hole evaporation process.Comment: 26 Pages, 10 Figures, Revised and References adde
    corecore