37 research outputs found

    Modelling Polycrystalline Materials: An Overview of Three-Dimensional Grain-Scale Mechanical Models

    Get PDF
    International audienc

    ICMM6

    Get PDF
    This volume contains selected papers presented at the 6th International Conference on Material Modeling (ICMM6), which took place June 26-28 2019 at the campus of Lund University, Sweden. By all meaningful measures, ICMM6 was a great success, attracting 161 participants from almost 30 countries (ranging from senior colleagues to graduate students)and featuring a technical program that well reflected the cutting-edge of materials modeling research. ICMM6 included thematic sessions on the following topics • linear elasticity and viscoelasticity • nonlinear elasticity • plasticity and viscoplasticity • experimental identification and material characterization • Cosserat, micromorphic and gradient materials • atomistic/continuum transition on the nanoscale • optimization and inverse problems in multiscale modeling • granular materials and particle systems • biomechanics and biomaterials • electronic materials • heterogeneous materials • coupled field problems • creep, damage and fatigue • numerical aspects of material modeling. The aim of the ICMM conferences is to bring together researchers from different fields of material modeling and material characterization, and to cover essentially all aspects of material modeling thus providing the opportunity for interactions between scientists working in different subareas of material mechanics who otherwise would not come into contact with each other

    A multiscale overview of modelling rolling cyclic fatigue in bearing elements

    Get PDF
    During service, bearing components experience rolling cyclic fatigue (RCF), resulting in subsurface plasticity and decay of the parent microstructure. The accumulation of micro strains spans billions of rolling cycles, resulting in the continuous evolution of the bearing steel microstructure. The bearing steel composition, non-metallic inclusions, continuously evolving residual stresses, and substantial work hardening, followed by subsurface softening, create further complications in modelling bearing steel at different length scales. The current study presents a multiscale overview of modelling RCF in terms of plastic deformation and the corresponding microstructural alterations. This article investigates previous models to predict microstructural alterations and material hardening approaches widely adopted to mimic the cyclic hardening response of the evolved bearing steel microstructure. This review presents state-of-the-art, relevant reviews in terms of this subject and provides a robust academic critique to enhance the understanding of the elastoplastic response of bearing steel under non-proportional loadings, damage evolution, and the formation mechanics of microstructural alterations, leading to the increased fatigue life of bearing components. It is suggested that a multidisciplinary approach at various length scales is required to fully understand the micromechanical and metallurgical response of bearing steels widely used in industry. This review will make significant contributions to novel design methodologies and improved product design specifications to deliver the durability and reliability of bearing elements

    Chemomechanische Modellierung der Wärmebehandlung von Stählen mit der Phasenfeldmethode

    Get PDF
    Die Entwicklung hochfester Stähle kann mithilfe numerischer Verfahren beschleunigt werden. Insbesondere die Phasenfeldmethode hat sich als mächtiges Werkzeug etabliert, um die Mikrostrukturentwicklung auf mesoskopischer Längenskala zu beschreiben. In der vorliegenden Arbeit werden Multiphasenfeldmodelle vorgestellt, um die Gefügeentwicklung während der Wärmebehandlung von Stahl numerisch abzubilden, was im weiteren Verlauf Rückschlüsse auf das Materialverhalten unter mechanischer Belastung ermöglicht. Dabei stehen die Phasenumwandlungen im Fokus, bei denen elastische treibende Kräfte maßgeblich zur Mikrostrukturentwicklung beitragen. Als ein wesentlicher Teil dessen wird ein neues Multiphasenfelmodell zu Simulation der martensitischen Umwandlung entwickelt, das elastische treibende Kräfte verwendet, die auf den mechanischen Sprungbedingungen basieren. Die beim Abschrecken einer ferritischen-austenitischen Mikrostruktur auftretende martensitische Umwandlung wird mithilfe elastischer und elastoplastischer Simulationen untersucht und der resultierende Materialzustand analysiert. Es werden Methoden vorgestellt, um die Energielandschaft zu quantifizieren, die sich nach dem Wachstum einer bainitischen Untereinheit ausbildet, um Aussagen über das Nukleationsverhalten nachfolgender Untereinheiten zu treffen. Zudem wird ein Modell für das Wachstum von Widmanstätten-Ferrit vorgestellt, bei dem die nadelartige Struktur ein Resultat anisotroper Eigendehnungen darstellt. Es wird festgestellt, dass zwei Widmanstätten-Nadeln, die in einem gewissen Abstand zueinander wachsen, über das Spannungsfeld interagieren, wodurch die Morphologie beeinflusst wird. Darüber hinaus wird am Beispiel der Wärmebehandlung von Dualphasenstahl eine digitale Prozesskette aufgebaut, die es ermöglicht, die Auswirkungen einzelner Prozessparameter auf nachfolgende Prozessschritte zu berücksichtigen

    Multiscale modelling for fusion and fission materials: the M4F project

    Get PDF
    The M4F project brings together the fusion and fission materials communities working on the prediction of radiation damage production and evolution and their effects on the mechanical behaviour of irradiated ferritic/martensitic (F/M) steels. It is a multidisciplinary project in which several different experimental and computational materials science tools are integrated to understand and model the complex phenomena associated with the formation and evolution of irradiation induced defects and their effects on the macroscopic behaviour of the target materials. In particular the project focuses on two specific aspects: (1) To develop physical understanding and predictive models of the origin and consequences of localised deformation under irradiation in F/M steels; (2) To develop good practices and possibly advance towards the definition of protocols for the use of ion irradiation as a tool to evaluate radiation effects on materials. Nineteen modelling codes across different scales are being used and developed and an experimental validation programme based on the examination of materials irradiated with neutrons and ions is being carried out. The project enters now its 4th year and is close to delivering high-quality results. This paper overviews the work performed so far within the project, highlighting its impact for fission and fusion materials science.Peer ReviewedL. Malerba a,*, M.J. Caturla b, E. Gaganidze c, C. Kaden d, M.J. Konstantinovi´c e, P. Olsson f, C. Robertson g, D. Rodney h, A.M. Ruiz-Moreno i, M. Serrano a, J. Aktaa c, N. Anento j, S. Austin i, A. Bakaev e, J.P. Balbuena b, F. Bergner d, F. Boioli k, M. Boleininger l, G. Bonny e, N. Castin e, J.B. J. Chapman l, P. Chekhonin d, M. Clozel m, B. Devincre k, L. Dupuy g, G. Diego a, S.L. Dudarev l, C.-C. Fu g, R. Gatti k, L. G´el´ebart g, B. G´omez-Ferrer n, D. Gonçalves g, C. Guerrero a, P.M. Gueye n, P. H¨ahner i, S.P. Hannula o, Q. Hayat p, M. Hern´andez-Mayoral a, J. Jagielski m, N. Jennett p, F. Jim´enez a, G. Kapoor d, A. Kraych h, T. Khvan e,q, L. Kurpaska m, A. Kuronen r, N. Kvashin j, O. Libera s, P.-W. Ma l, T. Manninen o, M.-C. Marinica g, S. Merino a, E. Meslin g, F. Mompiou t, F. Mota a, H. Namburi s, C.J. Ortiz a, C. Pareige n, M. Prester u, R.R. Rajakrishnan t, M. Sauzay g, A. Serra j, I. Simonovski i, F. Soisson g, P. Sp¨atig v, D. Tanguy h, D. Terentyev e, M. Trebala o, M. Trochet g, A. Ulbricht d, M.Vallet g, K. Vogel d, T. Yalcinkaya w, J. Zhao r a Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol´ogicas (CIEMAT), Madrid, Spain b Universidad de Alicante, San Vicente del Raspeig, Spain c Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany d Helmholtz-Zentrum Dresden-Rossendorf Ev (HZDR), Rossendorf, Germany e Studiecentrum voor Kernenergie / Centre d’´Etude de l’´Energie Nucl´eaire (SCK CEN), Mol, Belgium f KTH Royal Institute of Technology, Stockholm, Sweden g Universit´e Paris-Saclay, Commissariat `a l’´Energie Atomique et aux ´Energies Alternatives (CEA), Gif-sur-Yvette, France h Institut Lumi`ere Mati`ere (ILM), Centre National de la Recherche Scientifique, Lyon, France i Joint Research Centre (JRC)- European Commission, Petten, the Netherlands j Universitat Polit`ecnica de Catalunya, Barcelona, Spain k Laboratoire d’Etude des Microstructures (LEM), Centre National de la Recherche Scientifique, Chˆatillon, France l United Kingdom Atomic Energy Authority (UKAEA), Culham, UK m Narodowe Centrum Badan Jadrowych (NCBJ), Swierk, Poland n Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Mat´eriaux, 76000 Rouen, France o Aalto University, Espoo, Finland p Coventry University, UK q Universit´e de Li`ege, Belgium r Helsingin Yliopisto, Helsinki, Finland s Centrum Vyzkumu ˇReˇz S.R.O. (CVR), ˇReˇz, Czech Republic t Centre pour l’´Elaboration Elaboration de Mat´eriaux et pour l’´Etude des Structures (CEMES), Centre National de la Recherche Scientifique, Toulouse, France u Institut za Fiziku, Zagreb, Croatia v Paul Scherrer Institut (PSI), Villingen, Switzerland w Middle East Technical University (METU), Ankara, TurkeyPostprint (published version

    Multiscale modelling for fusion and fission materials: the M4F project

    Get PDF
    The M4F project brings together the fusion and fission materials communities working on the prediction of radiation damage production and evolution and its effects on the mechanical behaviour of irradiated ferritic/martensitic (F/M) steels. It is a multidisciplinary project in which several different experimental and computational materials science tools are integrated to understand and model the complex phenomena associated with the formation and evolution of irradiation induced defects and their effects on the macroscopic behaviour of the target materials. In particular the project focuses on two specific aspects: (1) To develop physical understanding and predictive models of the origin and consequences of localised deformation under irradiation in F/M steels; (2) To develop good practices and possibly advance towards the definition of protocols for the use of ion irradiation as a tool to evaluate radiation effects on materials. Nineteen modelling codes across different scales are being used and developed and an experimental validation programme based on the examination of materials irradiated with neutrons and ions is being carried out. The project enters now its 4th year and is close to delivering high-quality results. This paper overviews the work performed so far within the project, highlighting its impact for fission and fusion materials science.This work has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 755039 (M4F project)
    corecore