4,803 research outputs found

    Scalar quantization with random thresholds

    Get PDF
    The distortion-rate performance of certain randomly-designed scalar quantizers is determined. The central results are the mean-squared error distortion and output entropy for quantizing a uniform random variable with thresholds drawn independently from a uniform distribution. The distortion is at most six times that of an optimal (deterministically-designed) quantizer, and for a large number of levels the output entropy is reduced by approximately (1-γ)/(ln 2) bits, where γ is the Euler-Mascheroni constant. This shows that the high-rate asymptotic distortion of these quantizers in an entropy-constrained context is worse than the optimal quantizer by at most a factor of 6e[superscript -2(1-γ)] ≈ 2.58

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    Adaptive Quantizers for Estimation

    Full text link
    In this paper, adaptive estimation based on noisy quantized observations is studied. A low complexity adaptive algorithm using a quantizer with adjustable input gain and offset is presented. Three possible scalar models for the parameter to be estimated are considered: constant, Wiener process and Wiener process with deterministic drift. After showing that the algorithm is asymptotically unbiased for estimating a constant, it is shown, in the three cases, that the asymptotic mean squared error depends on the Fisher information for the quantized measurements. It is also shown that the loss of performance due to quantization depends approximately on the ratio of the Fisher information for quantized and continuous measurements. At the end of the paper the theoretical results are validated through simulation under two different classes of noise, generalized Gaussian noise and Student's-t noise

    One-bit Distributed Sensing and Coding for Field Estimation in Sensor Networks

    Full text link
    This paper formulates and studies a general distributed field reconstruction problem using a dense network of noisy one-bit randomized scalar quantizers in the presence of additive observation noise of unknown distribution. A constructive quantization, coding, and field reconstruction scheme is developed and an upper-bound to the associated mean squared error (MSE) at any point and any snapshot is derived in terms of the local spatio-temporal smoothness properties of the underlying field. It is shown that when the noise, sensor placement pattern, and the sensor schedule satisfy certain weak technical requirements, it is possible to drive the MSE to zero with increasing sensor density at points of field continuity while ensuring that the per-sensor bitrate and sensing-related network overhead rate simultaneously go to zero. The proposed scheme achieves the order-optimal MSE versus sensor density scaling behavior for the class of spatially constant spatio-temporal fields.Comment: Fixed typos, otherwise same as V2. 27 pages (in one column review format), 4 figures. Submitted to IEEE Transactions on Signal Processing. Current version is updated for journal submission: revised author list, modified formulation and framework. Previous version appeared in Proceedings of Allerton Conference On Communication, Control, and Computing 200

    Multiproduct Uniform Polar Quantizer

    Get PDF
    The aim of this paper is to reduce the complexity of the unrestricted uniform polar quantizer (UUPQ), keeping its high performances. To achieve this, in this paper we propose the multiproduct uniform polar quantizer (MUPQ), where several consecutive magnitude levels are joined in segments and within each segment the uniform product quantization is performed (i.e. all levels within one segments have the same number of phase levels). MUPQ is much simpler for realization than UUPQ, but it achieves similar performances as UUPQ. Since MUPQ has low complexity and achieves much better performances than the scalar uniform quantizer, it can be widely used instead of scalar uniform quantizers to improve performances, for any signal with the Gaussian distribution
    corecore