12,732 research outputs found

    On the Independence Jeffreys prior for skew--symmetric models with applications

    Get PDF
    We study the Jeffreys prior of the skewness parameter of a general class of scalar skew--symmetric models. It is shown that this prior is symmetric about 0, proper, and with tails O(λ−3/2)O(\lambda^{-3/2}) under mild regularity conditions. We also calculate the independence Jeffreys prior for the case with unknown location and scale parameters. Sufficient conditions for the existence of the corresponding posterior distribution are investigated for the case when the sampling model belongs to the family of skew--symmetric scale mixtures of normal distributions. The usefulness of these results is illustrated using the skew--logistic model and two applications with real data

    Bayesian inference for the multivariate skew-normal model: a Population Monte Carlo approach

    Full text link
    Frequentist and likelihood methods of inference based on the multivariate skew-normal model encounter several technical difficulties with this model. In spite of the popularity of this class of densities, there are no broadly satisfactory solutions for estimation and testing problems. A general population Monte Carlo algorithm is proposed which: 1) exploits the latent structure stochastic representation of skew-normal random variables to provide a full Bayesian analysis of the model and 2) accounts for the presence of constraints in the parameter space. The proposed approach can be defined as weakly informative, since the prior distribution approximates the actual reference prior for the shape parameter vector. Results are compared with the existing classical solutions and the practical implementation of the algorithm is illustrated via a simulation study and a real data example. A generalization to the matrix variate regression model with skew-normal error is also presented

    A note on marginal posterior simulation via higher-order tail area approximations

    Get PDF
    We explore the use of higher-order tail area approximations for Bayesian simulation. These approximations give rise to an alternative simulation scheme to MCMC for Bayesian computation of marginal posterior distributions for a scalar parameter of interest, in the presence of nuisance parameters. Its advantage over MCMC methods is that samples are drawn independently with lower computational time and the implementation requires only standard maximum likelihood routines. The method is illustrated by a genetic linkage model, a normal regression with censored data and a logistic regression model

    Coherent frequentism

    Full text link
    By representing the range of fair betting odds according to a pair of confidence set estimators, dual probability measures on parameter space called frequentist posteriors secure the coherence of subjective inference without any prior distribution. The closure of the set of expected losses corresponding to the dual frequentist posteriors constrains decisions without arbitrarily forcing optimization under all circumstances. This decision theory reduces to those that maximize expected utility when the pair of frequentist posteriors is induced by an exact or approximate confidence set estimator or when an automatic reduction rule is applied to the pair. In such cases, the resulting frequentist posterior is coherent in the sense that, as a probability distribution of the parameter of interest, it satisfies the axioms of the decision-theoretic and logic-theoretic systems typically cited in support of the Bayesian posterior. Unlike the p-value, the confidence level of an interval hypothesis derived from such a measure is suitable as an estimator of the indicator of hypothesis truth since it converges in sample-space probability to 1 if the hypothesis is true or to 0 otherwise under general conditions.Comment: The confidence-measure theory of inference and decision is explicitly extended to vector parameters of interest. The derivation of upper and lower confidence levels from valid and nonconservative set estimators is formalize
    • …
    corecore