10,521 research outputs found

    ScaRR: Scalable Runtime Remote Attestation for Complex Systems

    Full text link
    The introduction of remote attestation (RA) schemes has allowed academia and industry to enhance the security of their systems. The commercial products currently available enable only the validation of static properties, such as applications fingerprint, and do not handle runtime properties, such as control-flow correctness. This limitation pushed researchers towards the identification of new approaches, called runtime RA. However, those mainly work on embedded devices, which share very few common features with complex systems, such as virtual machines in a cloud. A naive deployment of runtime RA schemes for embedded devices on complex systems faces scalability problems, such as the representation of complex control-flows or slow verification phase. In this work, we present ScaRR: the first Scalable Runtime Remote attestation schema for complex systems. Thanks to its novel control-flow model, ScaRR enables the deployment of runtime RA on any application regardless of its complexity, by also achieving good performance. We implemented ScaRR and tested it on the benchmark suite SPEC CPU 2017. We show that ScaRR can validate on average 2M control-flow events per second, definitely outperforming existing solutions.Comment: 14 page

    Pretty Private Group Management

    Full text link
    Group management is a fundamental building block of today's Internet applications. Mailing lists, chat systems, collaborative document edition but also online social networks such as Facebook and Twitter use group management systems. In many cases, group security is required in the sense that access to data is restricted to group members only. Some applications also require privacy by keeping group members anonymous and unlinkable. Group management systems routinely rely on a central authority that manages and controls the infrastructure and data of the system. Personal user data related to groups then becomes de facto accessible to the central authority. In this paper, we propose a completely distributed approach for group management based on distributed hash tables. As there is no enrollment to a central authority, the created groups can be leveraged by various applications. Following this paradigm we describe a protocol for such a system. We consider security and privacy issues inherently introduced by removing the central authority and provide a formal validation of security properties of the system using AVISPA. We demonstrate the feasibility of this protocol by implementing a prototype running on top of Vuze's DHT

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment
    • …
    corecore