12 research outputs found

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Learning Equivariant Representations

    Get PDF
    State-of-the-art deep learning systems often require large amounts of data and computation. For this reason, leveraging known or unknown structure of the data is paramount. Convolutional neural networks (CNNs) are successful examples of this principle, their defining characteristic being the shift-equivariance. By sliding a filter over the input, when the input shifts, the response shifts by the same amount, exploiting the structure of natural images where semantic content is independent of absolute pixel positions. This property is essential to the success of CNNs in audio, image and video recognition tasks. In this thesis, we extend equivariance to other kinds of transformations, such as rotation and scaling. We propose equivariant models for different transformations defined by groups of symmetries. The main contributions are (i) polar transformer networks, achieving equivariance to the group of similarities on the plane, (ii) equivariant multi-view networks, achieving equivariance to the group of symmetries of the icosahedron, (iii) spherical CNNs, achieving equivariance to the continuous 3D rotation group, (iv) cross-domain image embeddings, achieving equivariance to 3D rotations for 2D inputs, and (v) spin-weighted spherical CNNs, generalizing the spherical CNNs and achieving equivariance to 3D rotations for spherical vector fields. Applications include image classification, 3D shape classification and retrieval, panoramic image classification and segmentation, shape alignment and pose estimation. What these models have in common is that they leverage symmetries in the data to reduce sample and model complexity and improve generalization performance. The advantages are more significant on (but not limited to) challenging tasks where data is limited or input perturbations such as arbitrary rotations are present

    Generating and auto-tuning parallel stencil codes

    Get PDF
    In this thesis, we present a software framework, Patus, which generates high performance stencil codes for different types of hardware platforms, including current multicore CPU and graphics processing unit architectures. The ultimate goals of the framework are productivity, portability (of both the code and performance), and achieving a high performance on the target platform. A stencil computation updates every grid point in a structured grid based on the values of its neighboring points. This class of computations occurs frequently in scientific and general purpose computing (e.g., in partial differential equation solvers or in image processing), justifying the focus on this kind of computation. The proposed key ingredients to achieve the goals of productivity, portability, and performance are domain specific languages (DSLs) and the auto-tuning methodology. The Patus stencil specification DSL allows the programmer to express a stencil computation in a concise way independently of hardware architecture-specific details. Thus, it increases the programmer productivity by disburdening her or him of low level programming model issues and of manually applying hardware platform-specific code optimization techniques. The use of domain specific languages also implies code reusability: once implemented, the same stencil specification can be reused on different hardware platforms, i.e., the specification code is portable across hardware architectures. Constructing the language to be geared towards a special purpose makes it amenable to more aggressive optimizations and therefore to potentially higher performance. Auto-tuning provides performance and performance portability by automated adaptation of implementation-specific parameters to the characteristics of the hardware on which the code will run. By automating the process of parameter tuning — which essentially amounts to solving an integer programming problem in which the objective function is the number representing the code's performance as a function of the parameter configuration, — the system can also be used more productively than if the programmer had to fine-tune the code manually. We show performance results for a variety of stencils, for which Patus was used to generate the corresponding implementations. The selection includes stencils taken from two real-world applications: a simulation of the temperature within the human body during hyperthermia cancer treatment and a seismic application. These examples demonstrate the framework's flexibility and ability to produce high performance code

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Remnants of compact binary mergers and next-generation numerical relativity codes

    Get PDF
    Numerical relativity (NR) simulations are crucial for studying the coalescence of compact binaries. Based on NR data, we produce a model for the mass and spin of the remnant black hole (BH) for the coalescence of black hole-neutron star systems, discussing its crucial role in gravitational wave (GW) modeling and in the parameter estimation of the two signals GW200105 and GW200115. In the context of binary neutron star merger simulations, we perform the first systematic study comparing results obtained with various neutrino treatments, the presence of turbulent viscosity and different grid resolutions. We find that the time of BH formation after merger is heavily affected by grid resolution and turbulent viscosity. An early BH formation limits matter ejection from the accretion disc, as the BH swallows a significant portion of it. Our results indicate that more reliable kilonova light curves are obtained only if the various ejecta components are present. Moreover, robust r-process nucleosynthesis yields require inclusion of both neutrino emission and reabsorption in simulations. Advanced neutrino schemes and turbulent viscosity in simulations resolved beyond current standards appear necessary for reliable astrophysical predictions. To carry out computationally demanding simulations of growing complexity, next-generation NR codes that can efficiently leverage the latest pre-exascale many-core and heterogeneous infrastructures are required. To this end we develop GR-Athena++, a new dynamical spacetime solver built on top of Athena++, that shows high-order convergence properties and excellent parallel scalability up to O(105) cores in full 3D binary black hole (BBH) merger simulations. Finally we present GR-AthenaK, the first performance-portable spacetime solver, obtained by refactoring GR-Athena++ with the Kokkos programming model. We demonstrate the correctness and convergence properties of GR-AthenaK with BBH runs on GPUs. GR-AthenaK shows a speedup ∼50 on one GPU compared to GR-Athena++ on a single CPU core

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    Hadron models and related New Energy issues

    Get PDF
    The present book covers a wide-range of issues from alternative hadron models to their likely implications in New Energy research, including alternative interpretation of lowenergy reaction (coldfusion) phenomena. The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex GinzburgLandau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development. F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses theoretical link between Torsion fields and Hadronic Mechanic. A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital Discrete and Combinatorial methods and their likely implications in New Energy research. Pavel Pintr et al. describe planetary orbit distance from modified Schrödinger equation, and M. Pereira discusses his new Hypergeometrical description of Standard Model of elementary particles. The present volume will be suitable for researchers interested in New Energy issues, in particular their link with alternative hadron models and interpretation

    Book of abstracts

    Get PDF
    corecore