12 research outputs found

    Scalable prediction of compound-protein interactions using minwise hashing

    Full text link

    DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences

    Full text link
    Identification of drug-target interactions (DTIs) plays a key role in drug discovery. The high cost and labor-intensive nature of in vitro and in vivo experiments have highlighted the importance of in silico-based DTI prediction approaches. In several computational models, conventional protein descriptors are shown to be not informative enough to predict accurate DTIs. Thus, in this study, we employ a convolutional neural network (CNN) on raw protein sequences to capture local residue patterns participating in DTIs. With CNN on protein sequences, our model performs better than previous protein descriptor-based models. In addition, our model performs better than the previous deep learning model for massive prediction of DTIs. By examining the pooled convolution results, we found that our model can detect binding sites of proteins for DTIs. In conclusion, our prediction model for detecting local residue patterns of target proteins successfully enriches the protein features of a raw protein sequence, yielding better prediction results than previous approaches.Comment: 26 pages, 7 figure

    Ant Colony Optimization for Prediction of Compound-Protein Interactions

    Get PDF
    The prediction of Compound-Protein Interactions (CPI) is an essential step in drug-target analysis for developing new drugs. Therefore, it needs a good incentive to develop a faster and more effective method to predicting the interaction between compound and protein. Predicting the unobserved link of CPI can be done with Ant Colony Optimization for Link Prediction (ACO_LP) algorithms. Each ant selects its path according to the pheromone value and the heuristic information in the link. The path passed by the ant is evaluated and the pheromone information on each link is updated according to the quality of the path. The pheromones on each link are used as the final value of similarity between nodes. The ACO_LP are tested on benchmark CPI data: Nuclear Receptor, G-Protein Coupled Receptor (GPCR), Ion Channel, and Enzyme. Result show that the accuracy values for Nuclear Receptor, GPCR, Ion Channel, and Enzyme dataset are 0.62, 0.62, 0.74, and 0.79 respectively. The results indicate that ACO_LP has good accuracy for prediction of CPI

    Drug-Target Interaction Networks Prediction Using Short-linear Motifs

    Get PDF
    Drug-target interaction (DTI) prediction is a fundamental step in drug discovery and genomic research and contributes to medical treatment. Various computational methods have been developed to find potential DTIs. Machine learning (ML) has been currently used for new DTIs identification from existing DTI networks. There are mainly two ML-based approaches for DTI network prediction: similarity-based methods and feature-based methods. In this thesis, we propose a feature-based approach, and firstly use short-linear motifs (SLiMs) as descriptors of protein. Additionally, chemical substructure fingerprints are used as features of drug. Moreover, another challenge in this field is the lack of negative data for the training set because most data which can be found in public databases is interaction samples. Many researchers regard unknown drug-target pairs as non-interaction, which is incorrect, and may cause serious consequences. To solve this problem, we introduce a strategy to select reliable negative samples according to the features of positive data. We use the same benchmark datasets as previous research in order to compare with them. After trying three classifiers k nearest neighbours (k-NN), Random Forest (RF) and Support Vector Machine (SVM), we find that the results of k-NN are satisfied but not as excellent as RF and SVM. Compared with existing approaches using the same datasets to solve the same problem, our method performs the best under most circumstance

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p

    Efficient, Dependable Storage of Human Genome Sequencing Data

    Get PDF
    A compreensão do genoma humano impacta várias áreas da vida. Os dados oriundos do genoma humano são enormes pois existem milhões de amostras a espera de serem sequenciadas e cada genoma humano sequenciado pode ocupar centenas de gigabytes de espaço de armazenamento. Os genomas humanos são críticos porque são extremamente valiosos para a investigação e porque podem fornecer informações delicadas sobre o estado de saúde dos indivíduos, identificar os seus dadores ou até mesmo revelar informações sobre os parentes destes. O tamanho e a criticidade destes genomas, para além da quantidade de dados produzidos por instituições médicas e de ciências da vida, exigem que os sistemas informáticos sejam escaláveis, ao mesmo tempo que sejam seguros, confiáveis, auditáveis e com custos acessíveis. As infraestruturas de armazenamento existentes são tão caras que não nos permitem ignorar a eficiência de custos no armazenamento de genomas humanos, assim como em geral estas não possuem o conhecimento e os mecanismos adequados para proteger a privacidade dos dadores de amostras biológicas. Esta tese propõe um sistema de armazenamento de genomas humanos eficiente, seguro e auditável para instituições médicas e de ciências da vida. Ele aprimora os ecossistemas de armazenamento tradicionais com técnicas de privacidade, redução do tamanho dos dados e auditabilidade a fim de permitir o uso eficiente e confiável de infraestruturas públicas de computação em nuvem para armazenar genomas humanos. As contribuições desta tese incluem (1) um estudo sobre a sensibilidade à privacidade dos genomas humanos; (2) um método para detetar sistematicamente as porções dos genomas que são sensíveis à privacidade; (3) algoritmos de redução do tamanho de dados, especializados para dados de genomas sequenciados; (4) um esquema de auditoria independente para armazenamento disperso e seguro de dados; e (5) um fluxo de armazenamento completo que obtém garantias razoáveis de proteção, segurança e confiabilidade a custos modestos (por exemplo, menos de 1/Genoma/Ano),integrandoosmecanismospropostosaconfigurac\co~esdearmazenamentoapropriadasTheunderstandingofhumangenomeimpactsseveralareasofhumanlife.Datafromhumangenomesismassivebecausetherearemillionsofsamplestobesequenced,andeachsequencedhumangenomemaysizehundredsofgigabytes.Humangenomesarecriticalbecausetheyareextremelyvaluabletoresearchandmayprovidehintsonindividuals’healthstatus,identifytheirdonors,orrevealinformationaboutdonors’relatives.Theirsizeandcriticality,plustheamountofdatabeingproducedbymedicalandlife−sciencesinstitutions,requiresystemstoscalewhilebeingsecure,dependable,auditable,andaffordable.Currentstorageinfrastructuresaretooexpensivetoignorecostefficiencyinstoringhumangenomes,andtheylacktheproperknowledgeandmechanismstoprotecttheprivacyofsampledonors.Thisthesisproposesanefficientstoragesystemforhumangenomesthatmedicalandlifesciencesinstitutionsmaytrustandafford.Itenhancestraditionalstorageecosystemswithprivacy−aware,data−reduction,andauditabilitytechniquestoenabletheefficient,dependableuseofmulti−tenantinfrastructurestostorehumangenomes.Contributionsfromthisthesisinclude(1)astudyontheprivacy−sensitivityofhumangenomes;(2)todetectgenomes’privacy−sensitiveportionssystematically;(3)specialiseddatareductionalgorithmsforsequencingdata;(4)anindependentauditabilityschemeforsecuredispersedstorage;and(5)acompletestoragepipelinethatobtainsreasonableprivacyprotection,security,anddependabilityguaranteesatmodestcosts(e.g.,lessthan1/Genoma/Ano), integrando os mecanismos propostos a configurações de armazenamento apropriadasThe understanding of human genome impacts several areas of human life. Data from human genomes is massive because there are millions of samples to be sequenced, and each sequenced human genome may size hundreds of gigabytes. Human genomes are critical because they are extremely valuable to research and may provide hints on individuals’ health status, identify their donors, or reveal information about donors’ relatives. Their size and criticality, plus the amount of data being produced by medical and life-sciences institutions, require systems to scale while being secure, dependable, auditable, and affordable. Current storage infrastructures are too expensive to ignore cost efficiency in storing human genomes, and they lack the proper knowledge and mechanisms to protect the privacy of sample donors. This thesis proposes an efficient storage system for human genomes that medical and lifesciences institutions may trust and afford. It enhances traditional storage ecosystems with privacy-aware, data-reduction, and auditability techniques to enable the efficient, dependable use of multi-tenant infrastructures to store human genomes. Contributions from this thesis include (1) a study on the privacy-sensitivity of human genomes; (2) to detect genomes’ privacy-sensitive portions systematically; (3) specialised data reduction algorithms for sequencing data; (4) an independent auditability scheme for secure dispersed storage; and (5) a complete storage pipeline that obtains reasonable privacy protection, security, and dependability guarantees at modest costs (e.g., less than 1/Genome/Year) by integrating the proposed mechanisms with appropriate storage configurations
    corecore