2,372 research outputs found

    The crowd as a cameraman : on-stage display of crowdsourced mobile video at large-scale events

    Get PDF
    Recording videos with smartphones at large-scale events such as concerts and festivals is very common nowadays. These videos register the atmosphere of the event as it is experienced by the crowd and offer a perspective that is hard to capture by the professional cameras installed throughout the venue. In this article, we present a framework to collect videos from smartphones in the public and blend these into a mosaic that can be readily mixed with professional camera footage and shown on displays during the event. The video upload is prioritized by matching requests of the event director with video metadata, while taking into account the available wireless network capacity. The proposed framework's main novelty is its scalability, supporting the real-time transmission, processing and display of videos recorded by hundreds of simultaneous users in ultra-dense Wi-Fi environments, as well as its proven integration in commercial production environments. The framework has been extensively validated in a controlled lab setting with up to 1 000 clients as well as in a field trial where 1 183 videos were collected from 135 participants recruited from an audience of 8 050 people. 90 % of those videos were uploaded within 6.8 minutes

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Dirichlet belief networks for topic structure learning

    Full text link
    Recently, considerable research effort has been devoted to developing deep architectures for topic models to learn topic structures. Although several deep models have been proposed to learn better topic proportions of documents, how to leverage the benefits of deep structures for learning word distributions of topics has not yet been rigorously studied. Here we propose a new multi-layer generative process on word distributions of topics, where each layer consists of a set of topics and each topic is drawn from a mixture of the topics of the layer above. As the topics in all layers can be directly interpreted by words, the proposed model is able to discover interpretable topic hierarchies. As a self-contained module, our model can be flexibly adapted to different kinds of topic models to improve their modelling accuracy and interpretability. Extensive experiments on text corpora demonstrate the advantages of the proposed model.Comment: accepted in NIPS 201

    What Makes Consumers Recall Banner Ads in Mobile Applications

    Get PDF
    The uses of mobile advertisements are increasing their popularity across the world. Companies can gather information about the mobile users based on their locations, lifestyle, and preferences via GPS, cookies and browsing history and embed highly personalized banner ads in mobile applications. However, in the literature there is hardly any work on the effectiveness of these highly personalized in-app banner ads. The aim of the study is to reveal which factors affect the effectiveness of in-app banner ads. An experimental study was designed and 209 subjects participated. The results of Ordinal Logistic Regression indicated that prior brand attitude and attitude towards application have a positive effect, while brand engagement with self-concept has a negative effect on the recall of in-app banner ads. Moreover, in-app banner ads are recalled more when they are located in landscape applications and positioned at the top part of the screen. This research provides some implications for future studies and practitioners

    Experience Report on the Challenges and Opportunities in Securing Smartphones Against Zero-Click Attacks

    Full text link
    Zero-click attacks require no user interaction and typically exploit zero-day (i.e., unpatched) vulnerabilities in instant chat applications (such as WhatsApp and iMessage) to gain root access to the victim's smartphone and exfiltrate sensitive data. In this paper, we report our experiences in attempting to secure smartphones against zero-click attacks. We approached the problem by first enumerating several properties we believed were necessary to prevent zero-click attacks against smartphones. Then, we created a security design that satisfies all the identified properties, and attempted to build it using off-the-shelf components. Our key idea was to shift the attack surface from the user's smartphone to a sandboxed virtual smartphone ecosystem where each chat application runs in isolation. Our performance and usability evaluations of the system we built highlighted several shortcomings and the fundamental challenges in securing modern smartphones against zero-click attacks. In this experience report, we discuss the lessons we learned, and share insights on the missing components necessary to achieve foolproof security against zero-click attacks for modern mobile devices

    Image analysis using visual saliency with applications in hazmat sign detection and recognition

    Get PDF
    Visual saliency is the perceptual process that makes attractive objects stand out from their surroundings in the low-level human visual system. Visual saliency has been modeled as a preprocessing step of the human visual system for selecting the important visual information from a scene. We investigate bottom-up visual saliency using spectral analysis approaches. We present separate and composite model families that generalize existing frequency domain visual saliency models. We propose several frequency domain visual saliency models to generate saliency maps using new spectrum processing methods and an entropy-based saliency map selection approach. A group of saliency map candidates are then obtained by inverse transform. A final saliency map is selected among the candidates by minimizing the entropy of the saliency map candidates. The proposed models based on the separate and composite model families are also extended to various color spaces. We develop an evaluation tool for benchmarking visual saliency models. Experimental results show that the proposed models are more accurate and efficient than most state-of-the-art visual saliency models in predicting eye fixation.^ We use the above visual saliency models to detect the location of hazardous material (hazmat) signs in complex scenes. We develop a hazmat sign location detection and content recognition system using visual saliency. Saliency maps are employed to extract salient regions that are likely to contain hazmat sign candidates and then use a Fourier descriptor based contour matching method to locate the border of hazmat signs in these regions. This visual saliency based approach is able to increase the accuracy of sign location detection, reduce the number of false positive objects, and speed up the overall image analysis process. We also propose a color recognition method to interpret the color inside the detected hazmat sign. Experimental results show that our proposed hazmat sign location detection method is capable of detecting and recognizing projective distorted, blurred, and shaded hazmat signs at various distances.^ In other work we investigate error concealment for scalable video coding (SVC). When video compressed with SVC is transmitted over loss-prone networks, the decompressed video can suffer severe visual degradation across multiple frames. In order to enhance the visual quality, we propose an inter-layer error concealment method using motion vector averaging and slice interleaving to deal with burst packet losses and error propagation. Experimental results show that the proposed error concealment methods outperform two existing methods
    corecore