4,258 research outputs found

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems

    Comparing a Traditional and a Multi-Agent Load-Balancing System

    Get PDF
    This article presents a comparison between agent and non-agent based approaches to building network-load-balancing systems. In particular, two large software systems are compared, one traditional and the other agent-based, both performing the same load balancing functions. Due to the two different architectures, several differences emerge. The differences are analyzed theoretically and practically in terms of design, scalability and fault-tolerance. The advantages and disadvantages of both approaches are presented by combining an analysis of the system and gathering the experience of designers, developers and users. Traditionally, designers specify rigid software structure, while for multi-agent systems the emphasis is on specifying the different tasks and roles, as well as the interconnections between the agents that cooperate autonomously and simultaneously. The major advantages of the multi-agent approach are the introduced abstract design layers and, as a consequence, the more comprehendible top-level design, the increased redundancy, and the improved fault tolerance. The major improvement in performance due to the agent architecture is observed in the case of one or more failed computers. Although the agent-oriented design might not be a silver bullet for building large distributed systems, our analysis and application confirm that it does have a number of advantages over non-agent approaches

    MonALISA : A Distributed Monitoring Service Architecture

    Full text link
    The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) system provides a distributed monitoring service. MonALISA is based on a scalable Dynamic Distributed Services Architecture which is designed to meet the needs of physics collaborations for monitoring global Grid systems, and is implemented using JINI/JAVA and WSDL/SOAP technologies. The scalability of the system derives from the use of multithreaded Station Servers to host a variety of loosely coupled self-describing dynamic services, the ability of each service to register itself and then to be discovered and used by any other services, or clients that require such information, and the ability of all services and clients subscribing to a set of events (state changes) in the system to be notified automatically. The framework integrates several existing monitoring tools and procedures to collect parameters describing computational nodes, applications and network performance. It has built-in SNMP support and network-performance monitoring algorithms that enable it to monitor end-to-end network performance as well as the performance and state of site facilities in a Grid. MonALISA is currently running around the clock on the US CMS test Grid as well as an increasing number of other sites. It is also being used to monitor the performance and optimize the interconnections among the reflectors in the VRVS system.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 8 pages, pdf. PSN MOET00

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein

    Integrating Peer-to-Peer Networking and Computing in the AgentScape Framework

    Get PDF
    The combination of peer-to-peer networking and agentbased computing seems to be a perfect match. Agents are cooperative and communication oriented, while peerto -peer networks typically support distributed systems in which all nodes have equal roles and responsibilities. AgentScape is a framework designed to support large-scale multi-agent systems. Pole extends this framework with peerto -peer computing. This combination facilitates the development and deployment of new agent-based peer-to-peer applications and services
    • …
    corecore