2,012 research outputs found

    An Efficient Index for Visual Search in Appearance-based SLAM

    Full text link
    Vector-quantization can be a computationally expensive step in visual bag-of-words (BoW) search when the vocabulary is large. A BoW-based appearance SLAM needs to tackle this problem for an efficient real-time operation. We propose an effective method to speed up the vector-quantization process in BoW-based visual SLAM. We employ a graph-based nearest neighbor search (GNNS) algorithm to this aim, and experimentally show that it can outperform the state-of-the-art. The graph-based search structure used in GNNS can efficiently be integrated into the BoW model and the SLAM framework. The graph-based index, which is a k-NN graph, is built over the vocabulary words and can be extracted from the BoW's vocabulary construction procedure, by adding one iteration to the k-means clustering, which adds small extra cost. Moreover, exploiting the fact that images acquired for appearance-based SLAM are sequential, GNNS search can be initiated judiciously which helps increase the speedup of the quantization process considerably

    k-NN ๊ฒ€์ƒ‰ ๋ฐ k-NN ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ์„ ์œ„ํ•œ ๊ณ ์† ๊ทผ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2015. 2. ์ด์ƒ๊ตฌ.Finding k-nearest neighbors (k-NN) is an essential part of recommeder systems, information retrieval, and many data mining and machine learning algorithms. However, there are two main problems in finding k-nearest neighbors: 1) Existing approaches require a huge amount of time when the number of objects or dimensions is scale up. 2) The k-NN computation methods do not show the consistent performance over different search tasks and types of data. In this dissertation, we present fast and versatile algorithms for finding k-nearest neighbors in order to cope with these problems. The main contributions are summarized as follows: first, we present an efficient and scalable algorithm for finding an approximate k-NN graph by filtering node pairs whose large value dimensions do not match at all. Second, a fast collaborative filtering algorithm that utilizes k-NN graph is presented. The main idea of this approach is to reverse the process of finding k-nearest neighbors in item-based collaborative filtering. Last, we propose a fast approximate algorithm for k-NN search by selecting query-specific signatures from a signature pool to pick high-quality k-NN candidates.The experimental results show that the proposed algorithms guarantee a high level of accuracy while also being much faster than the other algorithms over different types of search tasks and datasets.Abstract i Contents iii List of Figures vii List of Tables xi Chapter 1 Introduction 1 1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Fast Approximation . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Versatility . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Our Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Greedy Filtering . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Signature Selection LSH . . . . . . . . . . . . . . . . . . . 7 1.2.3 Reversed CF . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 2 Background and Related Work 14 2.1 k-NN Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Locality Sensitive Hashing . . . . . . . . . . . . . . . . . . 15 2.1.2 LSH-based k-NN Search . . . . . . . . . . . . . . . . . . . 16 2.2 k-NN Graph Construction . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 LSH-based Approach . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Clustering-based Approach . . . . . . . . . . . . . . . . . 19 2.2.3 Heuristic-based Approach . . . . . . . . . . . . . . . . . . 20 2.2.4 Similarity Join . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Chapter 3 Fast Approximate k-NN Graph Construction 26 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Constructing a k-Nearest Neighbor Graph . . . . . . . . . . . . . 29 3.3.1 Greedy Filtering . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 Prefix Selection Scheme . . . . . . . . . . . . . . . . . . . 32 3.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Graph Construction Time . . . . . . . . . . . . . . . . . . 39 3.4.3 Graph Accuracy . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 44 3.5.2 Performance Comparison . . . . . . . . . . . . . . . . . . 48 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Chapter 4 Fast Collaborative Filtering 53 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Fast Collaborative Filtering . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Nearest Neighbor Graph Construction . . . . . . . . . . . 58 4.3.2 Fast Recommendation Algorithm . . . . . . . . . . . . . . 60 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 64 4.4.2 Overall Comparison . . . . . . . . . . . . . . . . . . . . . 65 4.4.3 Effects of Parameter Changes . . . . . . . . . . . . . . . . 68 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Chapter 5 Fast Approximate k-NN Search 72 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Signature Selection LSH . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.1 Data-dependent LSH . . . . . . . . . . . . . . . . . . . . . 75 5.2.2 Signature Pool Generation . . . . . . . . . . . . . . . . . . 76 5.2.3 Signature Selection . . . . . . . . . . . . . . . . . . . . . . 79 5.2.4 Optimization Techniques . . . . . . . . . . . . . . . . . . 83 5.3 S2LSH for Graph Construction . . . . . . . . . . . . . . . . . . . 84 5.3.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.2 Signature Selection . . . . . . . . . . . . . . . . . . . . . . 84 5.3.3 Optimization Techniques . . . . . . . . . . . . . . . . . . 85 5.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 87 5.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 91 5.5.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . 97 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Chapter 6 Conclusion 103 Bibliography 105 ์ดˆ๋ก 113Docto

    Active Semi-Supervised Learning Using Sampling Theory for Graph Signals

    Full text link
    We consider the problem of offline, pool-based active semi-supervised learning on graphs. This problem is important when the labeled data is scarce and expensive whereas unlabeled data is easily available. The data points are represented by the vertices of an undirected graph with the similarity between them captured by the edge weights. Given a target number of nodes to label, the goal is to choose those nodes that are most informative and then predict the unknown labels. We propose a novel framework for this problem based on our recent results on sampling theory for graph signals. A graph signal is a real-valued function defined on each node of the graph. A notion of frequency for such signals can be defined using the spectrum of the graph Laplacian matrix. The sampling theory for graph signals aims to extend the traditional Nyquist-Shannon sampling theory by allowing us to identify the class of graph signals that can be reconstructed from their values on a subset of vertices. This approach allows us to define a criterion for active learning based on sampling set selection which aims at maximizing the frequency of the signals that can be reconstructed from their samples on the set. Experiments show the effectiveness of our method.Comment: 10 pages, 6 figures, To appear in KDD'1

    An Efficient Approximate kNN Graph Method for Diffusion on Image Retrieval

    Full text link
    The application of the diffusion in many computer vision and artificial intelligence projects has been shown to give excellent improvements in performance. One of the main bottlenecks of this technique is the quadratic growth of the kNN graph size due to the high-quantity of new connections between nodes in the graph, resulting in long computation times. Several strategies have been proposed to address this, but none are effective and efficient. Our novel technique, based on LSH projections, obtains the same performance as the exact kNN graph after diffusion, but in less time (approximately 18 times faster on a dataset of a hundred thousand images). The proposed method was validated and compared with other state-of-the-art on several public image datasets, including Oxford5k, Paris6k, and Oxford105k
    • โ€ฆ
    corecore