11 research outputs found

    COTS Cluster-based Sort-last Rendering: Performance Evaluation and Pipelined Implementation

    Get PDF
    Sort-last parallel rendering is an efficient technique to visualize huge datasets on COTS clusters. The dataset is subdivided and distributed across the cluster nodes. For every frame, each node renders a full resolution image of its data using its local GPU, and the images are composited together using a parallel image compositing algorithm. In this paper, we present a performance evaluation of standard sort-last parallel rendering methods and of the different improvements proposed in the literature. This evaluation is based on a detailed analysis of the different hardware and software components. We present a new implementation of sort-last rendering that fully overlaps CPU(s), GPU and network usage all along the algorithm. We present experiments on a 3 years old 32-node PC cluster and on a 1.5 years old 5-node PC cluster, both with Gigabit interconnect, showing volume rendering at respectively 13 and 31 frames per second and polygon rendering at respectively 8 and 17 frames per second on a 1024×768 render area, and we show that our implementation outperforms or equals many other implementations and specialized visualization clusters

    Scalable Interactive Volume Rendering Using Off-the-shelf Components

    Get PDF
    This paper describes an application of a second generation implementation of the Sepia architecture (Sepia-2) to interactive volu-metric visualization of large rectilinear scalar fields. By employingpipelined associative blending operators in a sort-last configuration a demonstration system with 8 rendering computers sustains 24 to 28 frames per second while interactively rendering large data volumes (1024x256x256 voxels, and 512x512x512 voxels). We believe interactive performance at these frame rates and data sizes is unprecedented. We also believe these results can be extended to other types of structured and unstructured grids and a variety of GL rendering techniques including surface rendering and shadow map-ping. We show how to extend our single-stage crossbar demonstration system to multi-stage networks in order to support much larger data sizes and higher image resolutions. This requires solving a dynamic mapping problem for a class of blending operators that includes Porter-Duff compositing operators

    New Algorithmic Techniques for Large Scale Volumetric Data Visualization on Parallel Architectures

    Get PDF
    Volume visualization is widely used as an effective approach for the visual exploration, computational analysis, and manipulation of volumetric datasets. Due to the dramatic advances in imaging instruments and computing technologies, such datasets are now appearing at a very fast rate with increasingly larger sizes in many engineering, science and medical applications. Isosurface and direct volume rendering(DVR) are two of the most widely used techniques to render such datasets. This dissertation introduces novel techniques for rendering isosurfaces and volumes, and extends these techniques to multiprocessor architectures. We first focus on cluster-based techniques for isosurface extraction and rendering using polygonal approximation. We present a new simple indexing scheme and data layout approach, which enable scalable and efficient isosurface generation. This algorithm is the first known parallel algorithm to achieve provable load balancing on multiprocessor systems. We also develop an algorithm to generate isosurfaces using ray-casting on multi-core processors. Our method is based on a hybrid strategy that begins with an object order traversal of the data followed by ray-casting on ordered sets of an adaptive number of subcubes, one set for each small group of pixels on the image. We develop a multithreaded implementation, which uses new dynamic load balancing techniques that start with an image partitioning for the initial stage and then perform dynamic allocation of groups of ray-casting tasks among the different threads. The strategy ensures almost equal loads among the cores while maintaining spatial data locality. This scheme is extended to perform direct volume rendering and is shown to achieve similar improvements in terms of overall performance, load balancing, and scalability. We conduct a large number of tests for all our algorithms on the University of Maryland Visualization Cluster and on the 8-core Clovertown platform using a wide variety of datasets such as Richtmyer-Meshkov Instability dataset (7.5GB for each time step) and Visible Human dataset (~1GB). We obtain results that consistently validate the efficiency and the scalability of our algorithms. In particular, the overall performance of our hybrid ray-casting scheme achieves an interactive rendering rate on high resolution (1024x1024) screens for all the datasets tested

    Interactive Visual Analytics for Large-scale Particle Simulations

    Get PDF
    Particle based model simulations are widely used in scientific visualization. In cosmology, particles are used to simulate the evolution of dark matter in the universe. Clusters of particles (that have special statistical properties) are called halos. From a visualization point of view, halos are clusters of particles, each having a position, mass and velocity in three dimensional space, and they can be represented as point clouds that contain various structures of geometric interest such as filaments, membranes, satellite of points, clusters, and cluster of clusters. The thesis investigates methods for interacting with large scale data-sets represented as point clouds. The work mostly aims at the interactive visualization of cosmological simulation based on large particle systems. The study consists of three components: a) two human factors experiments into the perceptual factors that make it possible to see features in point clouds; b) the design and implementation of a user interface making it possible to rapidly navigate through and visualize features in the point cloud, c) software development and integration to support visualization

    Doctor of Philosophy in Computing

    Get PDF
    dissertationThe aim of direct volume rendering is to facilitate exploration and understanding of three-dimensional scalar fields referred to as volume datasets. Improving understanding is done by improving depth perception, whereas facilitating exploration is done by speeding up volume rendering. In this dissertation, improving both depth perception and rendering speed is considered. The impact of depth of field (DoF) on depth perception in direct volume rendering is evaluated by conducting a user study in which the test subjects had to choose which of two features, located at different depths, appeared to be in front in a volume-rendered image. Whereas DoF was expected to improve perception in all cases, the user study revealed that if used on the back feature, DoF reduced depth perception, whereas it produced a marked improvement when used on the front feature. We then worked on improving the speed of volume rendering on distributed memory machines. Distributed volume rendering has three stages: loading, rendering, and compositing. In this dissertation, the focus is on image compositing, more specifically, trying to optimize communication in image compositing algorithms. For that, we have developed the Task Overlapped Direct Send Tree image compositing algorithm, which works on both CPU- and GPU-accelerated supercomputers, which focuses on communication avoidance and overlapping communication with computation; the Dynamically Scheduled Region-Based image compositing algorithm that uses spatial and temporal awareness to efficiently schedule communication among compositing nodes, and a rendering and compositing pipeline that allows both image compositing and rendering to be done on GPUs of GPU-accelerated supercomputers. We tested these on CPU- and GPU-accelerated supercomputers and explain how these improvements allow us to obtain better performance than image compositing algorithms that focus on load-balancing and algorithms that have no spatial and temporal awareness of the rendering and compositing stages

    Visualization Techniques in Space and Atmospheric Sciences

    Get PDF
    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology

    Get PDF
    The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications
    corecore