2,280 research outputs found

    TRECVid 2007 experiments at Dublin City University

    Get PDF
    In this paper we describe our retrieval system and experiments performed for the automatic search task in TRECVid 2007. We submitted the following six automatic runs: ā€¢ F A 1 DCU-TextOnly6: Baseline run using only ASR/MT text features. ā€¢ F A 1 DCU-ImgBaseline4: Baseline visual expert only run, no ASR/MT used. Made use of query-time generation of retrieval expert coefficients for fusion. ā€¢ F A 2 DCU-ImgOnlyEnt5: Automatic generation of retrieval expert coefficients for fusion at index time. ā€¢ F A 2 DCU-imgOnlyEntHigh3: Combination of coefficient generation which combined the coefficients generated by the query-time approach, and the index-time approach, with greater weight given to the index-time coefficient. ā€¢ F A 2 DCU-imgOnlyEntAuto2: As above, except that greater weight is given to the query-time coefficient that was generated. ā€¢ F A 2 DCU-autoMixed1: Query-time expert coefficient generation that used both visual and text experts

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ā€˜shotā€™ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ā€˜broadcastā€™ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    K-Space at TRECVid 2008

    Get PDF
    In this paper we describe K-Spaceā€™s participation in TRECVid 2008 in the interactive search task. For 2008 the K-Space group performed one of the largest interactive video information retrieval experiments conducted in a laboratory setting. We had three institutions participating in a multi-site multi-system experiment. In total 36 users participated, 12 each from Dublin City University (DCU, Ireland), University of Glasgow (GU, Scotland) and Centrum Wiskunde & Informatica (CWI, the Netherlands). Three user interfaces were developed, two from DCU which were also used in 2007 as well as an interface from GU. All interfaces leveraged the same search service. Using a latin squares arrangement, each user conducted 12 topics, leading in total to 6 runs per site, 18 in total. We officially submitted for evaluation 3 of these runs to NIST with an additional expert run using a 4th system. Our submitted runs performed around the median. In this paper we will present an overview of the search system utilized, the experimental setup and a preliminary analysis of our results

    K-Space at TRECVID 2008

    Get PDF
    In this paper we describe K-Spaceā€™s participation in TRECVid 2008 in the interactive search task. For 2008 the K-Space group performed one of the largest interactive video information retrieval experiments conducted in a laboratory setting. We had three institutions participating in a multi-site multi-system experiment. In total 36 users participated, 12 each from Dublin City University (DCU, Ireland), University of Glasgow (GU, Scotland) and Centrum Wiskunde and Informatica (CWI, the Netherlands). Three user interfaces were developed, two from DCU which were also used in 2007 as well as an interface from GU. All interfaces leveraged the same search service. Using a latin squares arrangement, each user conducted 12 topics, leading in total to 6 runs per site, 18 in total. We officially submitted for evaluation 3 of these runs to NIST with an additional expert run using a 4th system. Our submitted runs performed around the median. In this paper we will present an overview of the search system utilized, the experimental setup and a preliminary analysis of our results

    Towards an All-Purpose Content-Based Multimedia Information Retrieval System

    Full text link
    The growth of multimedia collections - in terms of size, heterogeneity, and variety of media types - necessitates systems that are able to conjointly deal with several forms of media, especially when it comes to searching for particular objects. However, existing retrieval systems are organized in silos and treat different media types separately. As a consequence, retrieval across media types is either not supported at all or subject to major limitations. In this paper, we present vitrivr, a content-based multimedia information retrieval stack. As opposed to the keyword search approach implemented by most media management systems, vitrivr makes direct use of the object's content to facilitate different types of similarity search, such as Query-by-Example or Query-by-Sketch, for and, most importantly, across different media types - namely, images, audio, videos, and 3D models. Furthermore, we introduce a new web-based user interface that enables easy-to-use, multimodal retrieval from and browsing in mixed media collections. The effectiveness of vitrivr is shown on the basis of a user study that involves different query and media types. To the best of our knowledge, the full vitrivr stack is unique in that it is the first multimedia retrieval system that seamlessly integrates support for four different types of media. As such, it paves the way towards an all-purpose, content-based multimedia information retrieval system

    Video Data Visualization System: Semantic Classification And Personalization

    Full text link
    We present in this paper an intelligent video data visualization tool, based on semantic classification, for retrieving and exploring a large scale corpus of videos. Our work is based on semantic classification resulting from semantic analysis of video. The obtained classes will be projected in the visualization space. The graph is represented by nodes and edges, the nodes are the keyframes of video documents and the edges are the relation between documents and the classes of documents. Finally, we construct the user's profile, based on the interaction with the system, to render the system more adequate to its references.Comment: graphic
    • ā€¦
    corecore