7 research outputs found

    Multiple-input multiple-output visible light communication receivers for high data-rate mobile applications

    Full text link
    Visible light communication (VLC) is an emerging form of optical wireless communication that transmits data by modulating light in the visible spectrum. To meet the growing demand for wireless communication capacity from mobile devices, we investigate multiple-input multiple-output (MIMO) VLC to achieve multiplexing capacity gains and to allow multiple users to simultaneously transmit without disrupting each other. Previous approaches to receive VLC signals have either been unable to simultaneously receive multiple independent signals from multiple transmitters, unable to adapt to moving transmitters and receivers, or unable to sample the received signals fast enough for high-speed VLC. In this dissertation, we develop and evaluate two novel approaches to receive high-speed MIMO VLC signals from mobile transmitters that can be practically scaled to support additional transmitters. The first approach, Token-Based Pixel Selection (TBPS) exploits the redundancy and sparsity of high-resolution transmitter images in imaging VLC receivers to greatly increase the rate at which complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS) image sensors can sample VLC signals though improved signal routing to enable such high-resolution image sensors to capture high-speed VLC signals. We further model the CMOS APS pixel as a linear shift-invariant system, investigate how it scales to support additional transmitters and higher resolutions, and investigate how noise can affect its performance. The second approach, a spatial light modulator (SLM)-based VLC receiver, uses an SLM to dynamically control the resulting wireless channel matrix to enable relatively few photodetectors to reliably receive from multiple transmitters despite their movements. As part of our analysis, we develop a MIMO VLC channel capacity model that accounts for the non-negativity and peak-power constraints of VLC systems to evaluate the performance of the SLM VLC receiver and to facilitate the optimization of the channel matrix through the SLM

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Worst-case temporal analysis of real-time dynamic streaming applications

    Get PDF
    corecore