10,585 research outputs found

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    A Taxonomy of Self-configuring Service Discovery Systems

    Get PDF
    We analyze the fundamental concepts and issues in service discovery. This analysis places service discovery in the context of distributed systems by describing service discovery as a third generation naming system. We also describe the essential architectures and the functionalities in service discovery. We then proceed to show how service discovery fits into a system, by characterizing operational aspects. Subsequently, we describe how existing state of the art performs service discovery, in relation to the operational aspects and functionalities, and identify areas for improvement

    Mobile integrated conditional access system

    Get PDF
    This paper presents design of a novel security architecture integrating mobile and broadcasting technologies in the Pay-TV system. The security architecture proposed herein is a state-of-the-art solution to tackle well-known problems challenging current Pay-TV systems including but not limited to interoperability amongst service providers, relatively high cost of the service deployment, the security compromise, limited interactivity and bespoken services offered to subscribers. It also proposes the Follow-me service that enables subscribers to access their entitlements via an arbitrary set-top box

    The Role of Web Services at Home

    Get PDF
    The increase in computational power and the networking abilities of home appliances are revolutionizing the way we interact with our homes. This trend is growing stronger and opening a number of technological challenges. From the point of view of distributed systems, there is a need to design architectures for enhancing the comfort and safety of the home, which deal with issues of heterogeneity, scalability and openness. By considering the evolution of domotic research and projects, we advocate a role for web services in the domestic network, and propose an infrastructure based on web services. As a case study, we present an implementation for monitoring the health of an elder adult using multiple sensors and clients

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin
    • 

    corecore