42,424 research outputs found

    Distributed Bayesian Matrix Factorization with Limited Communication

    Full text link
    Bayesian matrix factorization (BMF) is a powerful tool for producing low-rank representations of matrices and for predicting missing values and providing confidence intervals. Scaling up the posterior inference for massive-scale matrices is challenging and requires distributing both data and computation over many workers, making communication the main computational bottleneck. Embarrassingly parallel inference would remove the communication needed, by using completely independent computations on different data subsets, but it suffers from the inherent unidentifiability of BMF solutions. We introduce a hierarchical decomposition of the joint posterior distribution, which couples the subset inferences, allowing for embarrassingly parallel computations in a sequence of at most three stages. Using an efficient approximate implementation, we show improvements empirically on both real and simulated data. Our distributed approach is able to achieve a speed-up of almost an order of magnitude over the full posterior, with a negligible effect on predictive accuracy. Our method outperforms state-of-the-art embarrassingly parallel MCMC methods in accuracy, and achieves results competitive to other available distributed and parallel implementations of BMF.Comment: 28 pages, 8 figures. The paper is published in Machine Learning journal. An implementation of the method is is available in SMURFF software on github (bmfpp branch): https://github.com/ExaScience/smurf

    Hamiltonian Monte Carlo Acceleration Using Surrogate Functions with Random Bases

    Full text link
    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the art methods
    • …
    corecore