605 research outputs found

    Virtual Coordination in Collective Object Manipulation

    Get PDF
    Inspired by nature, swarm robotics aims to increase system robustness while utilizing simple agents. In this work, we present a novel approach to achieve decentralized coordination of forces during collective manipulation tasks resulting in a highly scalable, versatile, and robust solution. In this approach, each robot involved in the collective object manipulation task relies on the behavior of a cooperative ``virtual teammate\u27 in a fully decentralized architecture, regardless of the size and configuration of the real team. By regulating their actions with their corresponding virtual counterparts, robots achieve continuous pose control of the manipulated object, while eliminating the need for inter-agent communication or a leader-follower architecture. To experimentally study the scalability, versatility, and robustness of the proposed collective object manipulation algorithm, a new swarm agent, Δρ is introduced which is able to apply linear forces in any planar direction. Efficiency and effectiveness of the proposed decentralized algorithm are investigated by quantitative performance metrics of settling time, steady-state error, path efficiency, and object velocity profiles in comparison with a force-optimal centralized version that requires complete information. Employing impedance control during manipulation of an object provides a mean to control its dynamic interactions with the environment. The proposed decentralized algorithm is extended to achieve a desired multi-dimensional impedance behavior of the object during a collective manipulation without inter-agent communication. The proposed algorithm extension is built upon the concept of ``virtual coordination\u27 which demands every agent to locally coordinate with one virtual teammate. Since the real population of the team is unknown to the agents, the resultant force applied to the manipulated object would be directly scaled with the team population. Although this scaling effect proves useful during position control of the object, it leads to a deviation from the desired dynamic response when employed in an impedance control scheme. To minimize such deviations, a gradient descent algorithm is implemented to determine a scaling parameter defined on the control action. The simulation results of a multi-robot system with different populations and formations verify the effectiveness of the proposed method in both generating the desired impedance response and estimating the population of the group. Eventually, as two case studies, the introduced algorithm is used in robotic collective manipulation and human- assistance scenarios. Simulation and experimental results indicate that the proposed decentralized communication- free algorithm successfully performs collective manipulation in all tested scenarios, and matches the performance of the centralized controller for increasing number of agents, demonstrating its utility in communication- limited systems, remote environments, and access-limited objects

    Decentralized Adaptive Control for Collaborative Manipulation of Rigid Bodies

    Full text link
    In this work, we consider a group of robots working together to manipulate a rigid object to track a desired trajectory in SE(3)SE(3). The robots do not know the mass or friction properties of the object, or where they are attached to the object. They can, however, access a common state measurement, either from one robot broadcasting its measurements to the team, or by all robots communicating and averaging their state measurements to estimate the state of their centroid. To solve this problem, we propose a decentralized adaptive control scheme wherein each agent maintains and adapts its own estimate of the object parameters in order to track a reference trajectory. We present an analysis of the controller's behavior, and show that all closed-loop signals remain bounded, and that the system trajectory will almost always (except for initial conditions on a set of measure zero) converge to the desired trajectory. We study the proposed controller's performance using numerical simulations of a manipulation task in 3D, as well as hardware experiments which demonstrate our algorithm on a planar manipulation task. These studies, taken together, demonstrate the effectiveness of the proposed controller even in the presence of numerous unmodeled effects, such as discretization errors and complex frictional interactions

    A reconfigurable distributed multiagent system optimized for scalability

    Get PDF
    This thesis proposes a novel solution for optimizing the size and communication overhead of a distributed multiagent system without compromising the performance. The proposed approach addresses the challenges of scalability especially when the multiagent system is large. A modified spectral clustering technique is used to partition a large network into logically related clusters. Agents are assigned to monitor dedicated clusters rather than monitor each device or node. The proposed scalable multiagent system is implemented using JADE (Java Agent Development Environment) for a large power system. The performance of the proposed topology-independent decentralized multiagent system and the scalable multiagent system is compared by comprehensively simulating different fault scenarios. The time taken for reconfiguration, the overall computational complexity, and the communication overhead incurred are computed. The results of these simulations show that the proposed scalable multiagent system uses fewer agents efficiently, makes faster decisions to reconfigure when a fault occurs, and incurs significantly less communication overhead. The proposed scalable multiagent system has been coupled with a scalable reconfiguration algorithm for an electric power system attempting to minimize the number of switch combination explored for reconfiguration. The reconfiguration algorithm reconfigures a power system while maintaining bus voltages within limits specified by constraints

    Adaptive Value Decomposition with Greedy Marginal Contribution Computation for Cooperative Multi-Agent Reinforcement Learning

    Full text link
    Real-world cooperation often requires intensive coordination among agents simultaneously. This task has been extensively studied within the framework of cooperative multi-agent reinforcement learning (MARL), and value decomposition methods are among those cutting-edge solutions. However, traditional methods that learn the value function as a monotonic mixing of per-agent utilities cannot solve the tasks with non-monotonic returns. This hinders their application in generic scenarios. Recent methods tackle this problem from the perspective of implicit credit assignment by learning value functions with complete expressiveness or using additional structures to improve cooperation. However, they are either difficult to learn due to large joint action spaces or insufficient to capture the complicated interactions among agents which are essential to solving tasks with non-monotonic returns. To address these problems, we propose a novel explicit credit assignment method to address the non-monotonic problem. Our method, Adaptive Value decomposition with Greedy Marginal contribution (AVGM), is based on an adaptive value decomposition that learns the cooperative value of a group of dynamically changing agents. We first illustrate that the proposed value decomposition can consider the complicated interactions among agents and is feasible to learn in large-scale scenarios. Then, our method uses a greedy marginal contribution computed from the value decomposition as an individual credit to incentivize agents to learn the optimal cooperative policy. We further extend the module with an action encoder to guarantee the linear time complexity for computing the greedy marginal contribution. Experimental results demonstrate that our method achieves significant performance improvements in several non-monotonic domains.Comment: This paper is accepted by aamas 202

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Activity Report 2021 : Automatic Control, Lund University

    Get PDF

    Cooperative aerial manipulation with force control and attitude stabilization

    Get PDF
    Ranging from autonomous flying cars, fixed wing and rotorcraft UAVs, there has been a tremendous interest in aerial robotics over the last decade. This thesis presents contributions to the state-of-art in cooperative payload transport with force synthesis and dynamic interaction using quadcopter UAVs. In this report, we consider multiple quadcopter aerial robots and develop decentralized force controller for them to manipulate a payload. We use quadcopters with a rigid link attached to it to collaboratively manipulate the payload. We develop a dynamic model of the payload for both point mass and rigid body cases. We model the contact force between the agents and the payload as a mass spring model. This assumption is valid when the vehicles are connected to the payload via elastic cables or when the payload is flexible or surrounded by elastic bumper materials. We also extend our aerial manipulation system to a multi-link arm attached to the quadcopter.We develop an adaptive decentralized control law for transporting a payload of unknown mass without explicit communication between the agents. Our controller ensures that all quadcopters and the payload asymptotically converges to a constant reference velocity. It also ensures that all of the forces applied to the payload converges to desired set-points. Desired thrusts and attitude angles are computed from the control algorithms and a low-level PD controller is implemented to track the desired commands for each quadcopter. The sum of the estimates of the unknown mass from all the agents converge to the true mass. We also employ a consensus algorithm based on connected graphs to ensure that each agent gets an equal share of the payload mass. Furthermore, we develop an orientation control algorithm that guarantees attitude stabilization of the payload. In particular, we develop time varying force set-points to enforce attitude regulation without any moment inputs from the quadcopters

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    Decentralized Collision-Free Control of Multiple Robots in 2D and 3D Spaces

    Full text link
    Decentralized control of robots has attracted huge research interests. However, some of the research used unrealistic assumptions without collision avoidance. This report focuses on the collision-free control for multiple robots in both complete coverage and search tasks in 2D and 3D areas which are arbitrary unknown. All algorithms are decentralized as robots have limited abilities and they are mathematically proved. The report starts with the grid selection in the two tasks. Grid patterns simplify the representation of the area and robots only need to move straightly between neighbor vertices. For the 100% complete 2D coverage, the equilateral triangular grid is proposed. For the complete coverage ignoring the boundary effect, the grid with the fewest vertices is calculated in every situation for both 2D and 3D areas. The second part is for the complete coverage in 2D and 3D areas. A decentralized collision-free algorithm with the above selected grid is presented driving robots to sections which are furthest from the reference point. The area can be static or expanding, and the algorithm is simulated in MATLAB. Thirdly, three grid-based decentralized random algorithms with collision avoidance are provided to search targets in 2D or 3D areas. The number of targets can be known or unknown. In the first algorithm, robots choose vacant neighbors randomly with priorities on unvisited ones while the second one adds the repulsive force to disperse robots if they are close. In the third algorithm, if surrounded by visited vertices, the robot will use the breadth-first search algorithm to go to one of the nearest unvisited vertices via the grid. The second search algorithm is verified on Pioneer 3-DX robots. The general way to generate the formula to estimate the search time is demonstrated. Algorithms are compared with five other algorithms in MATLAB to show their effectiveness
    corecore